Python3 --- 多层向前神经网络NN

本文介绍了神经网络的基础知识,包括神经网络的起源和发展,多层前向神经网络的结构和设计,以及反向传播(BP)算法的详细步骤。讨论了如何初始化权重,如何通过激活函数进行非线性转换,以及如何根据误差反向更新权重,直至满足训练终止条件。
摘要由CSDN通过智能技术生成

一、概述

神经网络算法( Neural Network )是机器学习中非常非常重要的算法。这是整个深度学习的核心算法,深度学习就是根据神经网络算法进行的一个延伸。理解这个算法的是怎么工作也能为后续的学习打下一个很好的基础。

 

二、背景

神经网络是受神经元启发的,对于神经元的研究由来已久,1904年生物学家就已经知晓了神经元的组成结构。

 

  • 1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP。
  • 1949年心理学家Hebb提出了Hebb学习率,认为人脑神经细胞的突触(也就是连接)上的强度上可以变化的。于是计算科学家们开始考虑用调整权值的方法来让机器学习。这为后面的学习算法奠定了基础。
  • 1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络。他给它起了一个名字--感知器( Perceptron)。
  • 1986年,Rumelhar和Hinton等人提出了反向传播( Backpropagation ,BP)算法,这是最著名的一个神经网络算法。

 

三、多层神经网络

多层向前神经网络由三部分组成:输入层(input layer), 隐藏层 (hidden layers), 输入层 (output layers)

 

  • 每层由单元(units)组成,输入层(input layer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值