点击上方蓝色字体“高中数学王晖”关注王晖老师,免费获取各种知识干货和学习经验~~~您的点赞转发是对老师的最大鼓舞~~~
距高考还有298天

定义法
运用解析几何中一些常用定义(例如圆,椭圆,双曲线和抛物线),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
常见一些基本曲线的定义如下:
①圆:到定点的距离等于定长
②椭圆:到两定点的距离之和为常数(大于两定点的距离)
③双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)
④抛物线:到定点与定直线距离相等。
例题:已知圆(x+4)
2
+y
2
=25的圆心为M
1
,圆(x-4)
2
+y
2
=1的圆心为M
2
,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。


备注:
算出轨迹方程之后,要结合题意,注明变量x,y的范围
变式1:
一动圆M与圆O
1
:x
2
+y
2
=1外切,而与圆O
2
:x
2
+y
2
-6x+8=0内切,那么动圆圆心M的轨迹方程。
变式2:
若B(-8,0),C(8,0)为△ABC的两顶点,AC和AB两边上的中线长之和为30,求△ABC的重心轨迹方程。

直接法
如果动点运动的条件就是一些几何量的等量关系(几何、三角或者向量表达式等),这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。
直接法解题步骤如下:
① 设点:设动点的坐标为(x,y)
② 列式:根据题目已知条件得到等量关系式
③ 化简:整合关系式
④ 范围:确认变量x,y的取值情况
例题:动点P到两个定点A(-3,0)和B(3,0)的距离之比等于2,即│PA│: │PB│=2:1,求动点P的轨迹方程。

变式1:
点M(x,y)到直线x=8的距离和它到定点F(1,0)的距离的比为2,则求动点M的轨迹方程。
变式2:
分别过A
1
(-1,0),A
2
(1,0)作两条互相垂直的直线,则求它们的交点M的轨迹方程。

几何法
若所求的轨迹满足某些几何性质(如直线垂直,线段垂直平分线,角平分线,直角三角形斜边中线等于斜边一半等),可以列出几何等式,再带入点坐标求出轨迹方程,这种方法被称为几何法。
例题:过点P(2,4)做两条互相垂直的直线L
1
,L
2
,若L
1
交x轴于A点,L
2
交y轴于B点,求线段AB的中点M的轨迹方程。

变式:
过圆O:x
2
+y
2
=4外一点A(4,0),作圆的割线,求割线被圆截的的弦BC中点M的轨迹方程。

相关点法
动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q
(x
0
,y
0
)
的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x
0
,
y
0
表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,称为相关点法。
相关点法解题步骤:
①
设形成轨迹的动点P坐标为(x,y);
② 设点Q的坐标为
(x
0
,y
0
),且有F(x
0
,y
0
)=0;
③ 动点P随着点Q有规律的运用可得:x
0
=f
(x,y),y
0
=g(x,y);
④ 把x
0
=f
(x,y),y
0
=g(x,y)带入F(x
0
,y
0
)=0,即可求出点P的轨迹方程。
例题:
抛物线y
2
=4x的通径与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。


变式1:从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程。
变式2:设点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹方程。

参数法
有时很难直接找出动点的横、纵坐标之间关系。
如果借助中间量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,便可得动点的轨迹方程,这种方法被称作参数法。
例题:过点A(0,1)做直线L与抛物线:x2=4y交于D,E两点,O为坐标原点,求△ODE的重心G的轨迹方程。


变式:
设抛物线y
2=4x的准线为L,焦点为F,顶点为O,P为抛物线上任意一点,又PQ⊥L,Q为垂足,求QF与OP的交点M的轨迹方程。

点差法
若设直线与圆锥曲线的交点坐标为A(x1,y1)、B(x2,y2),将这两点带入圆锥曲线的方程并对所得两式做差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种带点做差的方法为“点差法”。点差法对于解决弦中点轨迹问题非常有效。
例题:
求抛物线y
2
=4x的过焦点F的弦的中点M的轨迹方程。



变式:
过原点的直线L和抛物线y=x
2
-4x+6交于A、B两点,求线段AB的中点M的轨迹方程。

交轨法
在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程,该法通常与参数法同时使用。
交轨法解题步骤:
①根据题意已知动曲线F(x,y)=0和动曲线G(x,y)=0相交于点P,设动点P的坐标为(x,y)
②将F(x,y)=0与G(x,y)=0联立,求得交点坐标即可。
备注:
得到的交点坐标通常含有参数,还会有一个消参的过程。
例题:如图,已知抛物线C:y=x2,动点P在直线L:x-y-2=0上运动,过点P作抛物线C的两条切线PA,PB,且与抛物线C分别相切于A、B两点,求△APB的中心G的轨迹方程。


变式:
已知椭圆:x
2
/3+y
2
/2=1的左,右焦点分别为F
1
和F
2
,直线L
1
过F
2
且与x轴垂直,动直线L
2
与y轴垂直,L
2
交L
1
于点P。求线段PF
1
的垂直平分线与直线L的交点M的轨迹
方程.
往期优质数学干货链接:
【雨后春笋】圆锥曲线离心率的超全汇总------再不会就真的没办法了!!!
【器宇不凡】圆锥曲线最值的七大必考题型------你值得拥有!!!
【发人深思】高中数学新教材总体介绍------主编章教授是这样解读的!!!
【镜花水月】三角变换中“巧变角”的模型汇总------全是你想要的!!!
【厚德载物】洛必达法则需要这样用,时刻警惕这四大误区!!!
