计算机未来职业规划400字作文,未来生涯的规划作文

未来生涯的规划作文

在平日的学习、工作和生活里,许多人都有过写作文的经历,对作文都不陌生吧,作文是一种言语活动,具有高度的综合性和创造性。相信很多朋友都对写作文感到非常苦恼吧,以下是小编收集整理的未来生涯的规划作文,欢迎大家借鉴与参考,希望对大家有所帮助。

45aae4d3d7d559f5369438b0f1682240.png

未来生涯的规划作文1

蚕蛹会破茧成蝶,花苞会动人绽放,而我会长大成人。威风凛凛的警察叔叔,善良美丽的白衣天使,勤劳不倦的园丁老师,一份职业,一曲旋律。我为自己谱下一段旋律,用努力作音符,成长作为五线谱。

一百零四天以后,没有硝烟的一场战争就会爆发,我如果手无寸铁,必定惨败退场,那么我的梦也就惨淡,所以我要武装自己,当战争打响,胜者为王,败者为寇,而我,必须赢。因为我清楚地知道我想要的是什么,我要辉煌灿烂的人生。所以我要为以后的路做一个规划。

首先,我得选个大学。刚上高中的时候,我和好朋友填奋斗目标追踪卡,当时真的是瞎选的,解放军国防大学,但是回来以后查了一下,六百三十多的录取分数,我觉得值得作为目标啊。所以方向确定了,我要考上解放军国防大学,我要考六百三十多分。

然后会有一个小假期,这个假期太诱人了,我已经想好了,我要先找一份工作,白天打工,晚上健身,要把自己瘦下来,健康起来,还要积累点社会上的经验,为以后的路备课。还有一个月要去旅游,我要吃我最想吃的好吃的,做我最想做的,玩最好玩的,把这一个月里的每一秒钟都掰成两半用,就像这一百天的学习一样拼命。这个小假期,也许会遇到很多有趣的人,也许会发生很多有趣的事,也许还会遇上一个帅哥,太多的未知,充满吸引力。当我真正的收到通知书,我不会在朋友面前抬不起头,不会在老师面前抬不起头,不会让我的父母在别人面前抬不起头,人前人后都必须风光。就是这样,这些比我的大学都重要,当然,我更多的是为了我自己,不要让人看扁,我这人要强,心硬,心性高,我就是受不了输给别人,尤其输在一生的拐点。

虽然我从下就没什么大的理想,记得最清楚的是要有一个房子,房子里要有一个大冰箱连着便利店那种,还要有一个打电脑,饿了吃东西,困了睡觉,不饿不困就打游戏,这就是我最想过的生活,但我妈说这生活最难实现了,你得有资本啊。那么问题来了,我这人急性子,浮躁,做事总是三分钟热度,可能这一秒我雄赳赳气昂昂,下一秒我就只知道抱着抱枕睡大觉了,可是这一次我还偏得逼自己一次了,就这么一百天,才占你人生的几分之几啊,你可是要以后养你爸妈,吃你想吃的,的人啊,没点恒心你倒是在放屁呢啊。我妈说,吃了别人吃不了的苦,熬过别人熬不过的坎,你才能看见别人看不见的彩虹。说的太对了!

不喜欢太长远的计划,因为我办不到,但是我当前面对的高考,我有信心将它拿下,不争馒头争口气,我温櫂荣这次必须行。我要五点起床去班里看书,我要抓紧每个课间做题,晚上要好好休息。我要高效率的课堂,还有齐齐整整的笔记。周末也不出去,又花钱又办不了事。少吃饭多做题,少睡觉多思考,少说废话多复习。你要的不是现在一时的快乐,闲扯淡的茶余饭后那点小时光,当朋友们高考完再见,你要的是能拿出手的通知书。

我没有什么远大的梦想,但我毕竟有我的执着,就让我这么努力一回,我不想想我一百天后的样子,我只想慢慢的一步一步的走完这一百天,这一百天,不管多累,我不会放弃,不会停下来,不会被困难击倒。忘时忘物忘我,诚实朴实踏实。

我要告诉自己,你要记得,没什么事情值得你驻足观望,你只有一个目标,战胜高考,赢取你的通知书,赢取你的假期。就这样,冲吧,别停。只要坚定,必定成功。

未来生涯的规划作文2

这是一个浮躁的社会,也是一个拜金的社会,提前做好自己职业生涯的规划能为我们更好的实现自己的价值打下坚实的基础,作为新时代的高中生,我们就应该对社会有一个清醒的认识,对现在的政治环境、经济环境、文化环境等等都应有清醒的认识,只有这样我们才能更好适应社会,为社会做出更贡献,更好的实现自己的人生理想。

首先我们应该对自己有一个良好的认识,对于自己来说,我认为我的性格比较内向,不太善于和同学交流,喜欢听歌,但不会唱歌,喜欢发呆,但不喜欢运动,平时爱上网看动画片,玩玩游戏。对于学习,我经常半途而废,不能做到坚持不懈,导致学习成绩不是那么理想。在做事方面上我有时很马虎、轻率,有时很懒惰,在理智中又存在着盲目。现在我在清醒的面对现实时又多少带有一种脱离实际的幻想。在以后的学习工作中,我要努力改进自己的不足发扬自己的长处,让自己变的更优秀。自己在学习上有点马虎不认真,造成学习成绩的.不理想,以后这方面应该积极的改进,在以后我将以积极的态度努力学习,争取以优异的成绩完成学业。

我想让自己职业倾向理想而不是薪水,因为我们生活在一个浮躁的社会中,我们必须去讲节操,讲理想,而不是讲薪水,讲待遇,在我心中,我有自己的理想职业。我国现在社会政治稳定,经济发展迅速,社会不断进步,土木工程作为现在待遇最好的职业之一,备受大学生的欢迎。但我并不想随波逐流。通过对自己才能、性格、兴趣爱好、潜能等等,以及现在的社会、经济、政治、文化环境的分析,我开始对自己以后的职业生涯有了一些规划。我打算利用我满腔的爱国热忱,再努力学习科技方面的知识,报考国防科技方面的专业。

为了实现自己的目标,我必须做点什么。首先我要利用现在的大好时光努力学习科学文化知识,努力参加实践工作,做到理论与实践相结合。认识到自己的长处和不足,积极发扬自己的长处,弥补自己的不足,积极培养自己的独立性,努力调整自己的心态,当自己忧郁时学会适当的发泄,控制自己的性格,使自己的性格变的沉稳,不急躁。努力改进自己性格的不足之处,在学习中使自己的潜能得到最大的发挥,在学习中和以后的工作中维持自己对本职业的兴趣爱好,确立自己的职业目标,在学习中不断的充实自己所学的专业知识,不断提高自己的修养,获取更为好的专业技能,积极培养自己对社会的适应性,来适应日以激烈的社会人才的竞争。这就需要我们从现在就开始认真的了解社会,参与竞争!

自己现阶段制定了自己的职业规划书,但受到自己现阶段思想不太趋向成熟的限制,以后在自己的职业的选择,生涯路线,人生目标都可能存在一定的改动,自己在以后的工作学习中要不断的总结经验教训,使自己变的更成熟使自己以后的规划设计更接近实际打下基础。

自己能在这里做自己的第一篇职业生涯设计,使我自己对自己有进一步的了解,对自己的目标也有了进一步的明确,自己的学习动力有了进一步的提高,树立了自己的人生目标和职业目标,使自己的学习有了目标和针对性,对自己以后充满了信心,相信自己以后一定能取的成功,也使自己敢于面对自己人生路上的挫折和困难,尽量发挥出自己的潜能,这让我知道了自己的局限和弱点,接受现实,并勇敢的去面对,这也开始让我建立一种积极的心态,学会如何调整自己的心态。自己能以后更好的面对人生!

我相信我会成为一个众人前所未闻的武器设计师!

【未来生涯的规划作文】相关文章:

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值