logit模型应用实例_第六章 逻辑斯谛回归与最大熵模型(第1节 逻辑斯谛回归模型)...

逻辑斯谛回归(logistic regression)是经典的分类方法。

最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型(maximum entropy model)。

逻辑斯谛回归模型与最大熵模型都属于对数线性模型。

首先我们来弄清楚这两个模型,然后理解它们学习的算法。

一、逻辑斯谛回归模型

1.逻辑斯谛分布

先来看逻辑斯谛回归的基础——逻辑斯谛分布

很简单,分布函数密度函数如下:

其中,

位置参数
形状参数

它们对应的图形如下:

564013137635c1852c5d435b693078eb.png
逻辑斯谛分布函数

7b435a4ec1c3f1aab1acb84fc28a7e5a.png
逻辑斯谛密度函数

稍微有点相关知识,这一块很好理解。上图的分布函数属于逻辑斯谛函数,其图形是一条"S"形曲线(sigmoid curve)。该曲线以点

中心对称,即满足:

(找几个例点试试很好理解)

逻辑斯谛分布函数有什么特点呢?

"S"曲线在中心附近增长速度较快,在两端增长速度较慢。形状参数

越小,中心附近增长速度越快
。(密度函数曲线的胖瘦由
决定)。

2.二项逻辑斯谛回归模型

二项逻辑斯谛回归模型(binomial logistic regression model)是一种分类模型,并且还是一种二类分类模型。

模型由条件概率分布P(Y|X)表示,形式为参数化的逻辑斯谛分布。(就是说,模型最终是要计算出新的实例分为两类的概率分别是多少,比较两个概率的大小,将新的实例分到概率大的那一类去;参数化,即输入的新的实例是一个含多个特征的特征向量,对应一个能更好地分类的系数向量。)

二项逻辑斯谛回归模型的条件概率分布如下:

其中,

是输入,
是输出,
是参数,
称为
权值向量,b称为 偏置
内积。 (这一块可以参考一下感知机的内容)

用上面的条件概率分布就能进行分类了,到底是怎么分类的呢?

785c55cadfb257f59c68a47452bb9a2b.png
二项逻辑斯谛回归模型的分类原理

仔细看,P(Y=1|x)的图形(想象一下)很像前面说的逻辑斯谛分布函数的图形,P(Y=0|x)的图形则刚好和P(Y=1|x)的图形走势相反。这是其一,还有,我们假设

可知P(Y=1|x)与P(Y=0|x)是相等的,都等于
,所以对任意输入x,如果满足
,即P(Y=1|x)>P(Y=0|x)则输出为"1"类,如果满足
,即P(Y=1|x)<P(Y=0|x),则输出为"0"类。

即逻辑斯谛回归通过比较两个条件概率值得大小,将实例x分到概率值较大的那一类

将权值向量和输入向量加以扩充,仍记作

,即
,这样,逻辑斯谛回归模型改变如下:

到现在,逻辑斯谛回归模型都是通过比较两个概率值得大小来分类的,我们能不能整合成一个值,通过这一个值得大小就能进行分类呢?

能,这里我们要学习一个新的概念——几率(odds) (话说,我第一次接触这个概念,之前以为几率就是概率,现在才明白)。

定义:几率是指该事件发生的概率与该事件不发生的概率的比值。即事件发生概率如果是p,那么该事件的几率为

。(可以想象,当几率大于1时,说明该事件发生的概率大,几率小于1时,说明该事件发生的概率小)

从这个几率的概念推广一个概念叫——对数几率(log odds)或logit函数

(可以想象,当对数几率大于0时,说明该事件发生的概率大;对数几率小于0时,说明该事件发生的概率小)

对逻辑斯谛回归而言,对数几率为:

(可以想象,该值大于0时,分到"1"类;小于0时,分到"0"类。)

这就是为什么我们在前面说"逻辑斯谛回归模型属于对数线性模型"的原因,因为在逻辑斯谛回归模型中,输出Y=1的对数几率是输入x的线性函数

3.模型参数估计

参数估计就是估计出权值向量

偏置值
的取值。采用我们熟悉的
极大似然估计法来估计模型参数,从而得到逻辑斯谛回归模型。

给定训练数据集

,其中,

设:

这里的

的简写,方便似然函数的推导书写。

我们知道似然函数为:

取对数得到对数似然函数为:

极大值,得到
的估计值。

怎么来求这个极大值呢?我们已经在高等数学中学过了,差不多就是对各个参数求偏导并令其等于0。

逻辑斯谛回归学习中通常采用的方法是梯度下降法和拟牛顿法

假设我们通过上面的两个方法得到了参数

的极大似然估计值为
,那么我们就学习到了一个
二类分类逻辑斯谛回归模型为:

至此,我们已经得到了逻辑斯谛回归模型,到目前它只是个二项分类模型

4.多项逻辑斯谛回归

上面介绍的是二项逻辑斯谛回归模型,用于二类分类。我们可以将其推广为多项逻辑斯谛回归模型(multi-nominal logistic regression model),用于多类分类。

假设离散型随机变量Y的取值集合为

,那么
多项逻辑斯谛回归模型是:

这里,

二项逻辑斯谛回归的参数估计法也可以推广到多项逻辑斯谛回归上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值