点击上方蓝字,关注并星标,和我一起学技术.
题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
- 输入示例:[1,-2,3,10,-4,7,2,-5]
- 返回值:18
思路
这道题是经典的动态规划入门题目。把动态规划的式子写出来就好了。dp[n]代表以当前元素为截止点的连续子序列的最大和,如果dp[n-1]>0,dp[n]=dp[n]+dp[n-1];如果dp[n-1]<0,dp[n]不变。
public class Solution {
/*
**dp[i] = dp[i-1] + p[i] dp[i-1] > 0
**dp[i] = p[i] dp[i-1] = */
public int FindGreatestSumOfSubArray(int[] array) {
int max = array[0];
for( int i = 1; i if( array[i-1] > 0)
array[i] += array[i-1];
max = Math.max(max, array[i]);
}
return max;
}
}