最大连续子数组和 动态规划_30.连续子数组的最大和

点击上方蓝字,关注并星标,和我一起学技术.

3cf254e601174359c5efb31ebb6fc467.png

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

  • 输入示例:[1,-2,3,10,-4,7,2,-5]
  • 返回值:18

思路

这道题是经典的动态规划入门题目。把动态规划的式子写出来就好了。dp[n]代表以当前元素为截止点的连续子序列的最大和,如果dp[n-1]>0,dp[n]=dp[n]+dp[n-1];如果dp[n-1]<0,dp[n]不变。

public class Solution {
    
    /*
    **dp[i] = dp[i-1] + p[i]     dp[i-1] > 0
    **dp[i] = p[i]               dp[i-1] =    */
    public int FindGreatestSumOfSubArray(int[] array) {
        int max = array[0];
        for( int i = 1; i             if( array[i-1] > 0)
                array[i] += array[i-1];
            max = Math.max(max, array[i]);
        }
        return max;
    }
}

190e6b9893bac98da07d6727f1ead23b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值