leetcode334. 递增的三元子序列

题目:
给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。

解释:
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。

说明:
要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。

示例 1:

输入: [1,2,3,4,5]
输出: true

示例 2:

输入: [5,4,3,2,1]
输出: false

思路:
题目明确要求算法的时间复杂度为 O(n),空间复杂度为 O(1) ,故不能使用暴力解法,开始一直在考虑如何记录每个元素之前递增元素的个数,一直无法完成空间复杂度为 O(1),后来受启发改变思路,可以记录遍历到当前最小的值first和某次遍历中递增子序列第二小的值second,如果当前值大于second的值则说明当前值是某次遍历中第三小的值,即之前递增序列有两个,现在有三个值,达到要求,返回true。遍历完还未返回则说明无递增三元子序列,返回false。

代码:

class Solution {
public:
    bool increasingTriplet(vector<int>& nums) {
        int first = INT_MAX, second = INT_MAX, n = nums.size();
        if(n < 3) {
            return false;
        }
        for(int i = 0; i < n; i++) {
            if(nums[i] <= first) {
                first = nums[i];
            }
            else if(nums[i] <= second){
                second = nums[i];
            }
            else {
                return true;
            }
        }
        return false;
    }
};

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值