题目:
给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。
解释:
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明:
要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。
示例 1:
输入: [1,2,3,4,5]
输出: true
示例 2:
输入: [5,4,3,2,1]
输出: false
思路:
题目明确要求算法的时间复杂度为 O(n),空间复杂度为 O(1) ,故不能使用暴力解法,开始一直在考虑如何记录每个元素之前递增元素的个数,一直无法完成空间复杂度为 O(1),后来受启发改变思路,可以记录遍历到当前最小的值first和某次遍历中递增子序列第二小的值second,如果当前值大于second的值则说明当前值是某次遍历中第三小的值,即之前递增序列有两个,现在有三个值,达到要求,返回true。遍历完还未返回则说明无递增三元子序列,返回false。
代码:
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int first = INT_MAX, second = INT_MAX, n = nums.size();
if(n < 3) {
return false;
}
for(int i = 0; i < n; i++) {
if(nums[i] <= first) {
first = nums[i];
}
else if(nums[i] <= second){
second = nums[i];
}
else {
return true;
}
}
return false;
}
};
结果: