python的loc函数_如何在pandas中使用loc、iloc函数进行数据索引(入门篇)

本文介绍了在数据分析中如何使用Pandas的loc和iloc函数进行数据索引。通过示例详细讲解了loc函数基于行标签的索引,包括单行、多行、单列及多列数据的选取;同时也阐述了iloc函数通过行号索引,包括单行、多行、单列和多列的选取,强调了这两个函数的区别和使用注意事项。
摘要由CSDN通过智能技术生成

在数据分析过程中,很多时候我们需要从数据表中提取出我们需要的部分,而这么做的前提是我们需要先索引出这一部分数据。今天我们就来探索一下,如何在pandas中使用loc函数和iloc函数索引数据。

今天我们直接从例子出发:

import pandas as pd

import numpy as np

df = pd.DataFrame({'城市':['北京','广州', '天津', '上海', '杭州', '成都', '澳门', '南京'],

'收入':[10000, 10000, 5000, 5002, 40000, 50000, 8000, 5000],

'年龄':[50, 43, 34, 40, 25, 25, 45, 32]})

df.set_index([["一","二","三","四","五","六","七","八"]],inplace=True)

df

一、使用loc函数索引数据

(注意~loc函数主要通过 行标签 索引行数据)

1、索引行标签是“一”的这一行数据

df.loc["一"]

2、我们再来看另一种情况:

df.loc["一":"二"]

是不是很好奇!为什么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值