拓扑排序之AOV,关键路径之AOE

本文解析了活动节点(AOV)与活动边(AOE)在有向图中的概念,涉及拓扑排序与关键路径求解,强调了事件依赖和活动启动条件。通过实例演示了如何在实际问题中运用这两种模型来分析和优化项目流程。


一、AOV(activity on vertex)

拓扑排序问题针对AOV,每次从图中输出只有出度,没有入度的节点,形成一个有序序列,称为AOV,存在拓扑排序的有向图一定无环。
 

二、AOE(activity on edge)

AOE是边带权重的一种有向无环图,顶点代表事件,边代表活动,针对AOE的常见问题是求关键路径。
 
明确两个重要前提:
1、一个顶点代表的事件,只有当事件前的活动都完成才会发生;
2、一条边代表的活动,只有活动源头的事件发生,活动才能开始。

 
求关键路径的步骤见下图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值