线性回归系数的标准误_回归模型中的标准化回归系数是什么,该如何计算得到?...

本文介绍了在多因素回归模型中,如何理解和计算标准化回归系数。标准化回归系数用于比较不同自变量对因变量的相对影响,消除了量纲和数量级的影响。未标准化回归系数反映了自变量对因变量的绝对作用大小,而标准化回归系数则揭示了它们的相对重要性。SPSS软件在回归分析中可以直接输出标准化回归系数,也可以通过数据标准化处理自行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前期内容中,我们介绍了如何对数据进行标准化处理,将原始的连续型变量转化为一个无量纲的标准化数值,消除不同变量之间因性质、量纲、数量级等属性的差异而带来的影响,从而使不同变量的效应大小具有可比性,因此数据的标准化处理在实际的统计分析中也得到了较为广泛的应用。

那么,提到不同变量的效应大小,大家一定会联想到在多因素回归模型中所得到的回归系数。例如,我们假设自变量分别为身高和体重,根据回归系数很容易就知道每增加1cm的身高或每增加1kg的体重,引起的对因变量Y的影响大小,但是两者相比之下,到底谁的作用大谁的作用小呢?

原始的回归系数已经无法回答这样的问题,我们需要借助标准化回归系数来进行判断,今天我们就来向大家介绍一下,在回归模型中这个标准化回归系数到底是个什么鬼?

标准化回归系数

VS

未标准化回归系数

1、未标准化回归系数

通常我们在构建多因素回归模型时,方程中呈现的是未标准化回归系数,它是方程中不同自变量对应的原始的回归系数。它反映了在其他因素不变的情况下,该自变量每变化一个单位对因变量的作用大小。通过未标准化回归系数和常数项构建的方程,便可以对因变量进行预测,并得出结论。

2、标准化回归系数

而对于标准化回归系数,它是在对自变量和因变量同时进行标准化处理后所得到的回归系数,数据经过标准化处理后消除了量纲、数量级等差异的影响,使得不同变量之间具有可比性,因此可以用标准化回归系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值