gnn python 包_Python gnn包_程序模块 - PyPI - Python中文网

该回购协议包含一个图神经网络模型的tensorflow实现。

安装

要求

gnn框架需要包tensorflow,numpy,scipy。

要安装需求,可以使用以下命令pip install -U -r requirements.txt

安装最新版本的gnn:pip install gnn

有关其他详细信息,请参见Install。

简单用法示例import gnn.GNN as GNN

import gnn.gnn_utils

import Net as n

# Provide your own functions to generate input data

inp, arcnode, nodegraph, labels = set_load()

# Create the state transition function, output function, loss function and metrics

net = n.Net(input_dim, state_dim, output_dim)

# Create the graph neural network model

g = GNN.GNN(net, input_dim, output_dim, state_dim)

#Training

for j in range(0, num_epoch):

g.Train(inp, arcnode, labels, count, nodegraph)

# Validate

print(g.Validate(inp_val, arcnode_val, labels_val, count, nodegraph_val))

许可证

根据3条款BSD许可证发布(请参见license.txt):Copyright (C) 2004-2019 Matteo Tiezzi

Matteo Tiezzi

Alberto Rossi

欢迎加入QQ群-->: 979659372

推荐PyPI第三方库

人工智能(AI)最近经历了复兴,在视觉,语言,控制和决策等关键领域取得了重大进展。 部分原因在于廉价数据和廉价计算资源,这些资源符合深度学习的自然优势。 然而,在不同的压力下发展的人类智能的许多定义特征仍然是当前方法无法实现的。 特别是,超越一个人的经验 - 从婴儿期开始人类智能的标志 - 仍然是现代人工智能的一项艰巨挑战。 以下是部分立场文件,部分审查和部分统一。我们认为组合概括必须是AI实现类似人类能力的首要任务,结构化表示和计算是实现这一目标的关键。就像生物学利用自然和培养合作一样,我们拒绝“手工工程”和“端到端”学习之间的错误选择,而是倡导一种从其互补优势中获益的方法。我们探索如何在深度学习架构中使用关系归纳偏差来促进对实体,关系和组成它们的规则的学习。我们为AI工具提供了一个新的构建模块,具有强大的关系归纳偏差 - 图形网络 - 它概括和扩展了在图形上运行的神经网络的各种方法,并为操纵结构化知识和生成结构化行为提供了直接的界面。我们讨论图网络如何支持关系推理和组合泛化,为更复杂,可解释和灵活的推理模式奠定基础。作为本文的配套文件,我们还发布了一个用于构建图形网络的开源软件库,并演示了如何在实践中使用它们。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值