python 矩阵元素相加_Numpy中元素级运算

标量与矩阵的运算:

加法:

values = [1,2,3,4,5]

values = np.array(values) + 5

#现在 values 是包含 [6,7,8,9,10] 的一个 ndarray

乘法:

x = np.multiply(some_array, 5)

x = some_array * 5

矩阵与矩阵的运算:

加法:对应元素相加,但形状必须相同,形状不同则会报错

a = np.array([[1,3],[5,7]])

# array([[1, 3],

# [5, 7]])

b = np.array([[2,4],[6,8]])

# array([[2, 4],

# [6, 8]])

a + b

# array([[ 3, 7],

# [11, 15]])

乘法(叉乘):对应元素相乘

如上a *b 或者 np.multiply(a,b)都得到

# [[ 2 12]

# [30 56]]

乘法(点乘):大多数情况下所说的矩阵乘法都是指这个点乘

可以是不同形状的矩阵相乘,但必须满足“内侧相同”原则

m行n列矩阵乘以n行p列矩阵,等于m行p列的矩阵

如:

a = np.array([[1,2,3,4],[5,6,7,8]])

a

# 显示以下结果:

# array([[1, 2, 3, 4],

# [5, 6, 7, 8]])

a.shape

# 显示以下结果:

# (2, 4)

b = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])

b

# 显示以下结果:

# array([[ 1, 2, 3],

# [ 4, 5, 6],

# [ 7, 8, 9],

# [10, 11, 12]])

b.shape

# 显示以下结果:

# (4, 3)

c = np.matmul(a, b)

c

# 显示以下结果:

# array([[ 70, 80, 90],

# [158, 184, 210]])

c.shape

# 显示以下结果:

# (2, 3)

如果你的矩阵具有不兼容的形状,则会出现以下错误:

np.matmul(b, a)

# 显示以下错误:

# ValueError: shapes (4,3) and (2,4) not aligned: 3 (dim 1) != 2 (dim 0)

有时候,在你以为要用 matmul 函数的地方,你可能会看到 NumPy 的 如果矩阵是二维的,那么 dot 和 matmul 函数的结果是相同的

a = np.array([[1,2],[3,4]])

a

# 显示以下结果:

# array([[1, 2],

# [3, 4]])

np.dot(a,a)

# 显示以下结果:

# array([[ 7, 10],

# [15, 22]])

a.dot(a) # you can call你可以直接对 `ndarray` 调用 `dot`

# 显示以下结果:

# array([[ 7, 10],

# [15, 22]])

np.matmul(a,a)

# array([[ 7, 10],

# [15, 22]])

虽然这两个函数对于二维数据返回相同的结果,但在用于其他数据形状时,应该谨慎选择

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值