标量与矩阵的运算:
加法:
values = [1,2,3,4,5]
values = np.array(values) + 5
#现在 values 是包含 [6,7,8,9,10] 的一个 ndarray
乘法:
x = np.multiply(some_array, 5)
x = some_array * 5
矩阵与矩阵的运算:
加法:对应元素相加,但形状必须相同,形状不同则会报错
a = np.array([[1,3],[5,7]])
# array([[1, 3],
# [5, 7]])
b = np.array([[2,4],[6,8]])
# array([[2, 4],
# [6, 8]])
a + b
# array([[ 3, 7],
# [11, 15]])
乘法(叉乘):对应元素相乘
如上a *b 或者 np.multiply(a,b)都得到
# [[ 2 12]
# [30 56]]
乘法(点乘):大多数情况下所说的矩阵乘法都是指这个点乘
可以是不同形状的矩阵相乘,但必须满足“内侧相同”原则
m行n列矩阵乘以n行p列矩阵,等于m行p列的矩阵
如:
a = np.array([[1,2,3,4],[5,6,7,8]])
a
# 显示以下结果:
# array([[1, 2, 3, 4],
# [5, 6, 7, 8]])
a.shape
# 显示以下结果:
# (2, 4)
b = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
b
# 显示以下结果:
# array([[ 1, 2, 3],
# [ 4, 5, 6],
# [ 7, 8, 9],
# [10, 11, 12]])
b.shape
# 显示以下结果:
# (4, 3)
c = np.matmul(a, b)
c
# 显示以下结果:
# array([[ 70, 80, 90],
# [158, 184, 210]])
c.shape
# 显示以下结果:
# (2, 3)
如果你的矩阵具有不兼容的形状,则会出现以下错误:
np.matmul(b, a)
# 显示以下错误:
# ValueError: shapes (4,3) and (2,4) not aligned: 3 (dim 1) != 2 (dim 0)
有时候,在你以为要用 matmul 函数的地方,你可能会看到 NumPy 的 如果矩阵是二维的,那么 dot 和 matmul 函数的结果是相同的
a = np.array([[1,2],[3,4]])
a
# 显示以下结果:
# array([[1, 2],
# [3, 4]])
np.dot(a,a)
# 显示以下结果:
# array([[ 7, 10],
# [15, 22]])
a.dot(a) # you can call你可以直接对 `ndarray` 调用 `dot`
# 显示以下结果:
# array([[ 7, 10],
# [15, 22]])
np.matmul(a,a)
# array([[ 7, 10],
# [15, 22]])
虽然这两个函数对于二维数据返回相同的结果,但在用于其他数据形状时,应该谨慎选择