
时光荏苒,我的初三生活已经结束了,谨以此文,献给我挚爱的初中数学。
(本文可能是这个专栏的最后一篇有关中考的文章)

第一题由分类讨论可知,y=2x²-12+10,这题问题不大。
第二题,我的解法是,把y=-2x+n与x轴,y轴交点算出来,约束x轴、y轴交点所形成的角为锐角(也会形成一个钝角,但初中不考虑),然后求出这个锐角的tan值为2,同理可求y=-2x+10的tan值,也为2
因为我们在两个角均为锐角的情况下讨论,所以这两个角的tan值相等,即代表这两个角x相等,故由同位角相等,可证两直线平行。
(经评论区提醒,仍需考虑过原点的情况,可取直线上任意点求tan)
(第二问有很多种解法,不再赘述,读者可自行发掘)
第三题,才是这篇文章的中心内容

我的解图大概是这样,在官方解法上作了FH垂直x轴于H点
题目是求
由于ΔCEF与ΔEBF有相同的高FH,故
那么
进而得出
(想到这一步,应该是比较简单的。)
不妨设
由题意易知
联立可求
最终可化简到
然后,这个式子的处理,才是真正见水平的难题。
对此式进行通分处理
问题到了如何处理
到这里,很多考生选择从这开始配方,那肯定是很累的,我懒得这么做,当然这也是一种路子(如果你想不出其他办法,可以试)
或者利用均值不等式,虽然我承认均值不等式的构造非常巧妙,但毕竟不是通用解法。因为计算过程中带有大量根号。
而已经到这个份上了,你用均值不等式,那我为什么不能用其他知识点,况且过程写到这里,你只要把正确答案写下去,不把化简思路写出来,扣分也不会多,大概率是不扣分的。
我选择求导。
令
需要y取得最小值,只需y'分子为0即可,即得
这就是个常规的一元二次方程,可以用公式法和配方法。
解得
代入可知
这是2020年的福建中考压轴,明显带有2017年福建中考压轴的味道。
这个其实非常有意思,2018和2019两年的中考压轴风格相近,2017和2020的风格相近。
(这题也可从韦达定理角度求解,不过思路比较巧妙,不易想到)
(也可在
这是数形结合的思路,我最初想到的也是这种方法,不过需要分类讨论,不够直接,所以不再详述)
(这个式子的化简,详见我的这篇文章
热爱代数的好学生:含参分式求最值(初高中衔接向))
对新一届福建初三学子的几句话:
作为你们的学长呢,确实想发自内心地说一句,你们面临的困境真的比我们大得多。
单就数学一科而言,2021年的福建中考数学命卷团队与2017-2020的命卷团队不同,你们将面对的是谁也无法预料的题型和出题风格,这是非常多变的。
不过有一点,想必是不会抛却的
我省考题高度接轨高中(解析几何、圆锥曲线、数学期望、加权平均等等)
甚至于很多道考题都是直接改编高考题
(今年的中考压轴,是高中很喜欢出的题型,即抛物线中的面积组合最值题)
所以诚望诸君,可以多去学一学高中的知识点,如果有可能的话,甚至可以和我一样,提前学完高中三年知识点,直接刷高考原题和一些高中教辅。
而这种福建的出题风格(含有大量参数,计算量很大,学习高中圆锥曲线)
与武汉这些年形成的风格极为类似,所以也请留意武汉这几年的中考题。
省内比较重点的四个城市的卷子:福州、厦门、泉州、?(命卷组组长来自的城市)
(2017-2020年是莆田,因为是在莆田的陈老师领导下出的卷子,明年就不清楚了)
个人认为,解决福建中考的函数压轴,它的核心思想和高中圆锥曲线的思想是一致的,总的来说是这么几句。
①求交点,联立函数表达式,不会就用韦达定理,算两根关系。(韦达定理必然是核心)
②若求动点,一定要设元,切记:每个动点必然都和某个定点有关系。
③把所有点的关系,尽量往韦达定理上靠。
④巧用图形或式子等的几何性质,毕竟“数形结合百般好,隔离分家万事休”(华罗庚语)
大概就这么多,想到了再补充吧。
后续文章中应该会有一些关于初高中衔接的知识点,对处理我省的中考题应该也会颇多裨益,望关注。