扩展欧几里得算法求逆元_专栏:ACM算法面面观[10]中国剩余定理

这篇博客介绍了中国剩余定理,又称孙子定理,及其在解决同余方程组问题上的应用。通过一个具体的曹冲养猪问题展示了如何利用扩展欧几里得算法求解同余方程组,并给出了一般化的解决方案和对应的C++代码实现。此外,还讨论了解这类问题的一般方法和数学原理。
摘要由CSDN通过智能技术生成

1e22622962cfa411a3f060f47a143bf1.png

中国剩余定理,也叫孙子定理,之所以叫这个名字,是因为《孙子算经》中有这样一个问题:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

这个被叫做“物不知数”的问题本质上是解下面的同余方程组:

994a9343-2f2d-eb11-8da9-e4434bdf6706.svg

后来的数学家在研究中发现,这一方程组有解的一个充分条件是 9a4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 两两互质,并用构造法给出了这种情况下方程的通解。而这种方法在算法竞赛中也常常会用到,例如这道模板题:

(洛谷P1495 曹冲养猪)

题目描述
自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了。如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 输入格式
第一行包含一个整数n (n <= 10) – 建立猪圈的次数,解下来n行,每行两个整数ai, bi( bi <= ai <= 1000), 表示建立了ai个猪圈,有bi头猪没有去处。你可以假定ai,aj互质. 输出格式
输出包含一个正整数,即为曹冲至少养母猪的数目。

(本质上就是给“物不知数”套了个背景。)


我们从“物不知数”这个具体问题出发。(接下来一大波数学公式,请做好心理再看)

要想直接找到一个 9b4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 使得方程组 9d4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 成立当然是不容易的,但是要找到 9e4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 使得 9f4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 是相对容易的。

那么令 a04a9343-2f2d-eb11-8da9-e4434bdf6706.svg 可以吗?那恐怕未必。在什么情况下 a14a9343-2f2d-eb11-8da9-e4434bdf6706.svg 可以推出 a24a9343-2f2d-eb11-8da9-e4434bdf6706.svg 呢?显然,那只有当 a34a9343-2f2d-eb11-8da9-e4434bdf6706.svg 是3的倍数时成立。同理,要使 a44a9343-2f2d-eb11-8da9-e4434bdf6706.svg 也符合前式,需要 a34a9343-2f2d-eb11-8da9-e4434bdf6706.svg 和 a64a9343-2f2d-eb11-8da9-e4434bdf6706.svg 都是3的倍数。

这样推下去,a04a9343-2f2d-eb11-8da9-e4434bdf6706.svg符合方程组的条件是 a84a9343-2f2d-eb11-8da9-e4434bdf6706.svg 是35的倍数, a34a9343-2f2d-eb11-8da9-e4434bdf6706.svg 是21的倍数, a64a9343-2f2d-eb11-8da9-e4434bdf6706.svg 是15的倍数。也就是说,现在我们只需要解三个同余方程 :

ac4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 。

注意到模数两两互质,则 ae4a9343-2f2d-eb11-8da9-e4434bdf6706.svg ,所以我们可以用拓展欧几里得的方法解

af4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 。(其实相当于求逆元)

解得 b04a9343-2f2d-eb11-8da9-e4434bdf6706.svg ,然后可得b24a9343-2f2d-eb11-8da9-e4434bdf6706.svg ,于是 b34a9343-2f2d-eb11-8da9-e4434bdf6706.svg 。

三者相加,即得一特解233(这里的233不是网络意义下的233,但我算出来不禁233了)。所有与233在模105意义下同余的数都是这个方程组的解,要求最小正数解只需对105取模即可,这里得出来是23。


现在我们把刚刚这个过程一般化。我们设 b44a9343-2f2d-eb11-8da9-e4434bdf6706.svg (即所有模数的乘积),并设 b54a9343-2f2d-eb11-8da9-e4434bdf6706.svg (在“物不知数”中即为35、21和15)。于是 b84a9343-2f2d-eb11-8da9-e4434bdf6706.svg (表示 b94a9343-2f2d-eb11-8da9-e4434bdf6706.svg 在模 ba4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 意义下的逆元), bc4a9343-2f2d-eb11-8da9-e4434bdf6706.svg , 而bd4a9343-2f2d-eb11-8da9-e4434bdf6706.svg ,所有 be4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 相加即得 9b4a9343-2f2d-eb11-8da9-e4434bdf6706.svg 。

我们把以上这些综合成一个(看起来可能有点劝退的)公式即是:

c04a9343-2f2d-eb11-8da9-e4434bdf6706.svg

现在我们来看(可能相对没那么劝退的)代码吧:

inline ll CRT(ll a[], ll b[], ll n)  // a是模数数组,b是余数数组,n是数组长度{
ll p = 1, x = 0;
for (int i = 0; i < n; ++i)
p *= a[i];
for (int i = 0; i < n; ++i)
{
ll r = p / a[i];
x += (b[i] * r * inv(r, a[i])) % p; // 逆元的求法参见上篇文章,或者下面有完整代码 }
return x % p;
}

这个函数返回的是符合方程组的最小正数解,一般要求的正是这个。

再附上曹冲养猪的完整AC代码:

#include using namespace std;typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y)
{if (b == 0)
{
x = 1;
y = 0;return a;
}
ll d = exgcd(b, a % b, y, x);
y -= (a / b) * x;return d;
}inline ll inv(ll a, ll p)
{
ll x, y;
exgcd(a, p, x, y);return (x % p + p) % p;
}inline ll CRT(ll a[], ll b[], ll n)
{
ll p = 1, x = 0;for (int i = 0; i < n; ++i)
p *= a[i];for (int i = 0; i < n; ++i)
{
ll r = p / a[i];
x += (b[i] * r * inv(r, a[i])) % p;
}return x % p;
}int main()
{
ll n, a[10], b[10];
scanf("%lld", &n);for (int i = 0; i < n; ++i)
scanf("%lld%lld", a + i, b + i);
printf("%lld\n", CRT(a, b, n));return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值