傅里叶变换复数形式的实部代表什么_傅里叶变换的意义是什么?

看到两个回答里提到了量子力学,但是好像回答的都不是太靠谱,于是作为物理专业本科生忍不住也来答一个。

首先先来说下另外两个提到量子力学的答案:波粒二象性和傅立叶变换有什么关系我真不知道。海森堡绘景和薛定谔绘景的差别在于一个把时间演化算符作用在可观测量算符上(所以其本征矢随时间改变),一个把它作用在态矢上,形象的理解就是一个是坐标轴在转但态矢量不变,一个是坐标轴不变态矢量在转。这个和傅立叶变换有什么关系我也不知道。

量子力学里面真的和傅立叶变换有关系的应该是位置和动量表象之间的表象变换(在某些回答的评论区也有人提到了),我觉得对于理解傅立叶系数的意义这是个挺不错的例子所以来分享一下。

(吐槽:知乎的公式编辑功能实在太辣鸡了变成下面这种情况不是我的本意……明明分成两个公式写的却被拼到了一行,而且修改起来光标各种蜜汁乱跳,早知道结果会这样就LaTeX里写完截图了……)

在量子力学中有一个非常重要的公式:

式中

是任意一个态矢,

是对应希尔伯特空间中的一组完备的正交归一基矢。如果没有学过量子对这个式子可以直观地类比为在直角坐标系中把一个矢量分解为x分量和y分量,

就是不同方向的单位矢量,

就是

这个方向上的投影。

根据这个公式,我们可以把态矢分别在坐标空间和动量空间进行投影:

当然由于这里是连续情况所以求和号应该写成积分,

就是所谓的位置表象与动量表象的波函数,物理意义是它的模方等于位置为x或者动量为p的概率密度,再次利用前面的公式我们可以得到两个波函数之间的关系:

所以为了得到表象变换,我们还需要知道动量和位置本征矢的内积,而为了得到内积,我们首先要选取一个表象,并计算位置和动量算符在这个表象下的本征矢,这里选择的是我们最熟悉的位置表象。

通过一些简单的求本征矢的计算我们可以得到:

如果计算一下这两个函数的模长平方从负无穷到正无穷的积分,我们会发现这两个函数不是平方可积的,也就是说它们不属于希尔伯特空间,但是如果我们利用delta函数的性质,可以人为构成出一个正交归一性来:

这就是所谓的狄拉克正交归一性(动量那个式子前面的系数是delta函数指数形式的归一化因子),有了这个关系之后物理学家就把这两个矢量强行塞进希尔伯特空间里(就是所谓的rigged Hilbert space,翻译成“魔改希尔伯特空间”大概比较合适),然后就可以用他们熟悉的线性代数来处理这个问题了。在位置表象中这两个本征矢分别是:

于是我们可以得到动量和位置本征矢之间的内积(过程省略,只要把上面两个式子代入算积分就好了):

把这些关系代入最开始我们写出的变换关系,同时将求和改写为积分,就可以得到动量和位置表象之间的变换公式了:

可以发现这两个公式恰好具有傅立叶变换的形式,我们得到这两个公式的过程基本都是出于物理上的考虑,而且变换前后的两个函数具有非常明确的物理含义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值