python 删除异常值_python 数据包的初级使用

450221d11f4a846e5004c2c481f3eeaa.png

第一部分 导入两类型数据包(numpy和pandas)

#导入数据包
import pandas as pd
import numpy as nu

1.创建数组

a)numpy 数据包

#创建0-5的数组集合
a=nu.array([0,1,2,3,4,5])

查询集合元素
a[0]  --0   返回第一个元素
切片访问
a[2:4] -- array([2,3,4])  返回一段区间元素
循环访问
for i in a 
    print (i)  0 1 2 3 4 5 --返回集合中的元素
数据类型
a.dtype 
dtype('int32')  --查询数据类型


numpy 数组两个和list 区别
1. 统计功能 平均值(mean),标准差std()
2. 向量化计算 1)向量相加 2)乘以标量  必须是同一种数据类型

b) pandas 数据包

#创建pandas数组,利用series 及index 索引构建数据集合
stock=pd.Series([54.74,190.9,173.14,1503,547,22.9],
                index=['腾讯','alibaba','苹果','万达','Facebook','亚马逊'])

#获取统计信息
stock.describe() --统计功能,计算标准值,方差和极值
#获取位置信息
stock.iloc[2] --返还第3个数组元素的值 173.14
#根据索引值获取信息
stock.loc['腾讯'] --返回腾讯对应的54.74值
#计算平均股价
stock.describe().loc['mean'] 

#向量相加
s1=pd.Series([1,2,3,4],index=['a','b','c','d'])
s2=pd.Series([10,20,30,40],index=['a','b','e','f'])
s3=s1+s2  

s3             --如果索引中的字段没有相对应,对应的数组值就会变nan
a    11.0
b    22.0
c     NaN
d     NaN
e     NaN
f     NaN
dtype: float64

nan值处理
a) #删除空值
s3.dropna() 
a    11.0
b    22.0
dtype: float64
b) #将空值进行补充
s3=s1.add(s2,fill_value=0)  --用 (.add fill_value) 进行空缺值补充

2.二位数组

a) numpy 二维数组

# 定义一个二维数组
a=nu.array([[1,2,3,4],[2,3,4,5],[5,6,7,8]])
print(a)

#查询元素   --0代表第1行,2代表第3列,输出结果3
a[0,2]
#查询第一行
a[0,:]  --输出第一行,所有列值  array([1, 2, 3, 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值