大家好,我是徽乡小居。这里分享一篇关于金字塔模型的专项学习,是专为奥数学生辅导用的。对于一般的学生可以学学其中的知识,看懂即可,可以开拓思维,从而对数学感兴趣。
几何专项:金字塔模型
今天我们将学习相似三角形当中另一个重要模型,金字塔模型。相似三角形具有的一些性质,金字塔模型同样具有。
一、金字塔模型
沙漏模型由一组平行线和一组相交线构成,且相交线的交点在平行线之间。如果交点在两条平行线的同一侧,就会构成一种新的模型,我们形象地称之为金字塔模型。在金字塔模型中也有相应的比例关系。

例1、如图EF与BC平行,AF∶FB=1∶2。AE=2,EF=3,那么CE的长度是多少?AC的长度是多少?BC的长度是多少?

思路分析:由金子塔模型,AE∶EC=AF∶FB=1∶2,可求出CE=2×2=4,
AC=2+4=6;EF∶BC=AF∶AB=1∶(1+2)=1∶3,可求出BC=3×3=9
练习题
1、如图所示,DE与BC平行,已知AD=4,BD=5,DE=16,则BC的长度是多少?

【答案】由金字塔模型,AD:AB=DE:BC=4:9;DE=16,可得出BC=36
例2、如图所示,DE与BC平行,已知AD=4,BD=5,△ADE的面积为32则四边形DECB面积是多少?

思路分析:由金字塔模型,S△ADE∶S△ABC=AD2∶AB2=42∶(4+5)2=16∶81,可求出S△ADE=32÷16×81=162,所以四边形DEBC的面积是162-32=130.
练习题
1、如图,直角三角形ABC中,AB=4,BC=6。又知BE∶EC=1∶3,求△CDE的面积。

【答案】由金字塔模型知,DE:AB=CE:CB=3:4,则DE=4×3/4=3.又知道CE=6×3/4=4.5,可求出△CDE的面积为3×4.5÷2=6.75。
例3、已知三角形ADE的面积为3平方厘米,D是AB的三等分点(靠近A点),且DE与BC平行,请求出三角形OBC的面积是多少平方厘米?

思路分析:图中既有沙漏模型,又有金字塔模型。
由金字塔模型知,AD∶AB=1∶3,S△ADE∶S△ABC=1∶9,可以求出S△ABC=3×9
=27平方厘米,S四边形DECF=27-3=24平方厘米。
由沙漏模型,OD∶OC=DE∶BC=AD∶AB=1∶3,设△ODE的面积为1份,则△ODB的面积为3份,△OEC的面积为3份,△ODB的面积也为3份,△OBC的面积为9份,由此可知△OBC的面积为24÷(1+3×2+9)×9=13.5平方厘米。
练习题
1、如右图所示,三角形ABC中,DE平行BC,DF平行AC,EF平行AB,已知△PQF的面积为54,△ADE的面积为96,那么 三角形ABC的面积是多少?


练习题答案
金字塔模型综合练习题
1、如图,三角形ABC的面积是1,D、E、F分别是相应的三等分点,三角形ADO的面积是多少?


练习题答案,简要过程
2、如图,已知D点是BC的中点,E是AC的中点。三角形ABC由①至⑤这5部分组成,其中①的面积比④多6平方厘米。请问:三角形的面积是多少平方厘米?


练习题答案,简要过程
3、如图,A、B、C分别是ED、EG、GF的中点,请问:三角形CDO的面积是三角形ABO面积的几倍?


练习题答案,简要过程
4、如图,E、F是正方形ABCD的边AB,BC的中点,如果正方形的面积是1,那么阴影部分的面积是多少?

提示:连接OB 答案:1/6
发篇文章挺花时间的,希望对有需要的人带来帮助。欢迎收藏,转发,点赞。更多分享,下期见哦。