几种统计一个二进制数内有几个1的方法
方法一:
int f1(int temp) {
int num = 0;
while(temp) {
int t = temp%2;
if(t == 1 || t == -1)
num ++;
temp /= 2;
}
return num;
}1
2
3
4
5
6
7
8
9
10
除法的效率比移位运算要低,这种方法不建议使用
方法二:
int f2(int n) {
int num = 0;
while(n) {
if(n & 1) num++;
n >>= 1;
}
return num;
}1
2
3
4
5
6
7
8
方法二把除法改成了移位,但次方法不能处理负数。
可能有人会有疑问为什么处理不了,这里举个例子:
N = -9;
第一次右移后,N = -5;
第二次右移后,N = -3;
第三次右移后,N = -2;
第四次右移后,N = -1;
第五次右移后,N = -1;
第六次右移后,N = -1;
会陷入死循环,所有此方法也不建议使用
方法三:
int f3(int n) {
int num = 0;
unsigned int flag = 1;
while(flag) {
if(n & flag)
num++ ;
flag <<= 1;
}
return num;
}1
2
3
4
5
6
7
8
9
10
为了避免死循环,我们可以不右移输入的数字n。
首先把n和1做与运算,判断n的最低位是不是1,
接着把1左移一位得到2 ,再和n做与运算,
就能判断n的次第位是不是为1
反复左移运算,每次都能判断n的其中一位是不是1。
此种解法的次数等于整数二进制的位数,32位的整数需要循环32次。
方法四:
int f4(int n) {
int num = 0;
while(n) {
num++;
n &= (n-1);
}
return num;
}1
2
3
4
5
6
7
8
对于这种情况:分两种情况讨论:
情况一:二进制末尾为1,减一后末尾为0 ,例如:1111 &(1110) = 1110
情况二:末尾为0,需要向前借位,
例如 1110 &(1101) = 1100
1100 &(1011) = 1000
1000 &(0111) = 0000
这个程序可以理解为:这个二进制有几个1运行几次
以上算法时间复杂度都为大于O(1)
O(1)算法
第一种:
int f5(int x){
x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1);
x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2);
x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4);
x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8);
x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16);
return x;
}1
2
3
4
5
6
7
8
第二种:
#include
using namespace std;
int f4(int n) {
int num = 0;
while(n) {
num++;
n &= (n-1);
}
return num;
}
int main() {
int n;
cin>>n;
int t = f4(n);
cout<
return 0;
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19