python时间序列预测arima平稳差分餐厅销量_Python时间序列&ARIMA股票预测

ARIMA(p,d,q)差分自回归移动平均模型

原理:将非平稳时间序列转化为平稳时间序列(d),然后将因变量仅对它的滞后值(p阶),以及随机误差项的现值和滞后值进行回归所建立的模型。

AR是自回归,p为自回归项; MA为移动平均,q为移动平均项数;d为时间序列成为平稳时所做的差分次数

平稳性

平稳性就是要求经由样本时间序列所得到的拟合曲线

在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去

平稳性要求序列的均值和方差不发生明显变化

严平稳与弱平稳

严平稳:严平稳表示的分布不随时间的改变而改变。

如:白噪声(正态),无论怎么取,都是期望为0,方差为1

弱平稳:期望与相关系数(依赖性)不变

未来某时刻的t的值Xt就要依赖于它的过去信息,所以需要依赖性

差分法:时间序列在t与t-1时刻的差值

自相关函数ACF

偏自相关函数(PACF)

ACF还包含了x(t)到x(t-k)之间K个变量的影响

而偏自相关系数PACF是严格的,只包含x(t),x(t-k)这两个变量之间的相关性

ARIMA阶数确定方法一:看ACF,PACF

建模流程:

1)平稳序列,差分确定D;

2)确定p阶和q阶,看ACF和PACF;

3)调用模型ARIMA(p,d,q).

模型选择AIC与BIC:趋于选择更简单的模型

模型残差检

ARIMA模型的残差是否是平均值为0且方差为常数的正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值