ARIMA(p,d,q)差分自回归移动平均模型
原理:将非平稳时间序列转化为平稳时间序列(d),然后将因变量仅对它的滞后值(p阶),以及随机误差项的现值和滞后值进行回归所建立的模型。
AR是自回归,p为自回归项; MA为移动平均,q为移动平均项数;d为时间序列成为平稳时所做的差分次数
平稳性
平稳性就是要求经由样本时间序列所得到的拟合曲线
在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去
平稳性要求序列的均值和方差不发生明显变化
严平稳与弱平稳
严平稳:严平稳表示的分布不随时间的改变而改变。
如:白噪声(正态),无论怎么取,都是期望为0,方差为1
弱平稳:期望与相关系数(依赖性)不变
未来某时刻的t的值Xt就要依赖于它的过去信息,所以需要依赖性
差分法:时间序列在t与t-1时刻的差值
自相关函数ACF
偏自相关函数(PACF)
ACF还包含了x(t)到x(t-k)之间K个变量的影响
而偏自相关系数PACF是严格的,只包含x(t),x(t-k)这两个变量之间的相关性
ARIMA阶数确定方法一:看ACF,PACF
建模流程:
1)平稳序列,差分确定D;
2)确定p阶和q阶,看ACF和PACF;
3)调用模型ARIMA(p,d,q).
模型选择AIC与BIC:趋于选择更简单的模型
模型残差检
ARIMA模型的残差是否是平均值为0且方差为常数的正