使用时间序列实现股票预测--ARIMA模型实战

本文通过Python实现使用ARIMA模型对股票收盘价进行时间序列预测。首先,对数据进行重采样,然后选取训练集,对数据进行差分处理,接着确定P和Q值,最后对2021年2月1日至4月20日的开盘价进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导入数据集

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import datetime
import seaborn as sns
from matplotlib.pylab import style
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
data=pd.read_excel(r'D:\股票数据1.xls',index_col=0,parse_dates=[0])
data.tail(10)

股票代码 名称 收盘价 最高价 最低价 开盘价
日期
2020-07-17 '601988 中国银行 3.41 3.42 3.39 3.41
2020-07-16 '601988 中国银行 3.40 3.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值