ln(1-x)的泰勒级数展开是:ln(1-x)=ln[1+(-x)]=Σ(-1)^(n+1)(-x)^n/n=Σx^n/n,-1≤x。泰勒展开f(x)=f(0)+f′(0)x+f″(0)x²/2!+...+fⁿ(0)...f(x)=ln(x+1)f(0)=ln1=0f′(0)=1/(x+1)=1f″(0)=-(x+1)^(-2)=-1f3(0)=-(-2)(x+1)^(-3)=2f4(0)=2*(-3)(x+1)^(-4)=-6fⁿ(0)=(-1)^(n+1)*(n-1)!ln(x+1)=0+x+(-1)x²/2!+.2*x³/3!+...+(-1)^(n+1)*(n-1)!*xⁿ/n!=x-x²/2+x³/3-.+(-1)^(n+1)xⁿ/n因为ln(1+x)=Σ(-1)^(n+1)x^n/n,-1<x≤1,所以ln(1-x)=ln[1+(-x)]=Σ(-1)^(n+1)(-x)^n/n=Σx^n/n,-1≤x。扩展资料:带Peano余项的Taylor公式(Maclaurin公式):可以反复利用L'Hospital法则来推导:f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n)(x0)/n!(x-x0)^n+o((x-x0)^n)泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和。f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x),其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。
阅读全文 >