两条曲线所围成的面积_阿基米德推算抛物线的面积

本文介绍了阿基米德如何推算抛物线与弦所围成区域的面积,该面积为阿基米德三角形面积的三分之二。通过证明一系列几何关系,展示了这一结论的正确性,利用等比数列求和公式进一步确认了计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

触碰标题下面一行中“邵勇老师”查看所有文章;触碰“数学教学研究”, 关注本微信公众号(sx100sy)。本公众号内容均由邵勇本人独创,欢迎转发,但未经许可不能转载。特别声明,本人未曾授权任何网站(包括微博)和公众号转载邵勇公众号的内容。每周推送两到三篇内容上有份量的数学文章,但在行文上力争做到深入浅出。几分钟便可读完,轻松学数学。


如下图所示。SA和SB是抛物线的两条切线,其中点A和点B是切点。AB为抛物线的一条弦。三角形SAB叫做阿基米德三角形(即两边为切线,一边为连接切点的弦的三角形)。那么,我们如何计算抛物线与弦之间围成区域(图中阴影所示)的面积呢?

95fb9a156fd25995d84d415d5f81b43d.png

阿基米德给出了一个结论,那就是:抛物线与弦之间所围成区域的面积为阿基米德三角形面积的三分之二。或者说,抛物线位于阿基米德三角形内部的部分把三角形分成2:1的两部分,其中位于抛物线内侧的部分为2份,外侧的为1份。

下面就来证明这个结论。

先有抛物线,说明它的焦点、准线、轴、顶点就都是确定的。如下图所示。

00385dcc68d6cca225290e082bf890b5.png

(1)首先,我们要证明,过点S作x轴的平行线,它与弦AB的交点M为AB的中点,即SM为阿基米德三角形SAB之边AB上的中线。如下图所示,分别过点A和B作准线l的垂线AP和BQ,其中P和Q为垂足。连接PF,连接QF。由于SA和SB为抛物线的切线,所以,SA垂直平分PF,SB垂直平分QF。所以点S为三角形FPQ的外心。所以,我们过S作x轴的平行线,也就是作准线l的垂线,也就是作三角形FPQ第三边PQ的垂线,设垂足为N。则SN一定垂直平分PQ。从而MN为直角梯形ABQP的中位线。所以,点M为腰AB也就是抛物线的弦AB的中点。

e520b2a6c84b298e1d40a9bdb1738c3a.png

(2)设SM与抛物线的交点为M'。连接AM',BM'。从而得到三角形ABM'。过点M'作抛物线的切线。它与切线SA和SB分别交于点A'和点B'。如下图所示。可以看出,三角形AA'M'也是阿基米德三角形(以两条切线A'A和A'M'为两边,以切点连线AM'为第三边)。过点A'作直线平行于x轴,与AM'相交于点C。则点C为AM'的中点。从而点A'为SA的中点。同理,点B'为SB的中点。从而A'B'为三角形SAB的与AB边平行的中位线,所以A'B'=AB/2,同时点M'为中线SM的中点。所以,我们可以得出,三角形SA'B'的面积等于三角形M'AB的面积的二分之一。这点很重要。下面的证明过程都要用到这一点。

02a4e99eea0e7c5ed54fd942d1ffc9c1.png

(3)在阿基米德三角形AA'M'中,设中线A'C与抛物线的交点为C'。连接AC',连接M'C',得到三角形AC'M',如下图所示。过点C'作抛物线的切线A"C"。类似前面的论述,可以得出,三角形AC'M'的面积与三角形A'A"C"的面积的比也为2:1。同理可得三角形BD'M'的面积与三角形B'B"D"的面积的比也为2:1。

0c0e87a1c4a46b9da4e29035f409fb31.png

(4)从而,上图中红色区域的面积与蓝色区域的面积的比为2:1(三组面积为2:1的区域,相加后仍保持这个比例)。在这两块区域之间留有空白区域,是四个更小的三角形,它们都是阿基米德三角形。再把它们逐个按照上面的方法继续切分,这样无限进行下去,显然,在极限情况下,中间的空白区域越来越小,最后就成为即无宽度也无面积的线,它就是抛物线位于三角形SAB内部的那部分曲线。它把阿基米德三角形SAB分割成2:1的两部分,其中位于抛物线内侧的区域的面积占2份。也就是说,位于抛物线内侧的区域的面积占整个阿基米德三角形面积的三分之二。

8b9e64880bb6ed36c607abb44631e62e.png

(5)上面所述非常漂亮,一下就得出结论。而阿基米德实际上是使用了等比数列求和公式,他精确计算出了这个面积为三角形面积的三分之二。这个等比数列是一个首项为Δ/2(Δ为三角形SAB的面积),公比为1/4的无穷等比数列的和。即

    (Δ/2)+(Δ/2)×(1/4)+(Δ/2)×(1/4)×(1/4)+···

=(Δ/2)×(1+1/4+1/16+···)

=(Δ/2)×(4/3)

=(2/3)Δ

(6)最后归结到计算阿基米德三角形SAB的面积,这就简单多了。这里不具体陈述了。


35633deed3eff8f4d922715ed46efbf7.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值