微积分-积分应用5.1(曲线之间的面积)

在第4章中,我们定义并计算了函数图像下方区域的面积。在这里,我们使用积分来计算位于两个函数图像之间的区域面积。

考虑区域S,它位于两条曲线 y = f ( x ) y = f(x) y=f(x) y = g ( x ) y = g(x) y=g(x) 之间,并且在垂直线 x = a x = a x=a x = b x = b x=b 之间,其中 f f f g g g 是连续函数,并且对于区间 [ a , b ] [a, b] [a,b] 内的所有 x x x f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)g(x)。(参见图1)
在这里插入图片描述

就像我们在第4.1节中对曲线下方的面积所做的那样,我们将区域S划分为宽度相等的n个条带,然后用一个底为 Δ x \Delta x Δx、高为 f ( x i ∗ ) − g ( x i ∗ ) f(x^*_i) - g(x^*_i) f(xi)g(xi) 的矩形来近似第 i i i 个条带。(参见图2。如果愿意,我们可以将所有的取样点设为右端点,即 x i ∗ = x i x^*_i = x_i xi=xi。)
在这里插入图片描述

因此,黎曼和

∑ i = 1 n [ f ( x i ∗ ) − g ( x i ∗ ) ] Δ x \sum_{i=1}^{n} [f(x^*_i) - g(x^*_i)]\Delta x i=1n[f(xi)g(xi)]Δx

便是我们直观上认为的区域S面积的一个近似值。

这种近似随着 n n n 趋向于无穷大而变得越来越好。因此,我们将区域 S S S 的面积 A A A 定义为这些近似矩形面积和的极限值。

1. A = lim ⁡ n → ∞ ∑ i = 1 n [ f ( x i ∗ ) − g ( x i ∗ ) ] Δ x 1.\qquad A = \lim_{{n \to \infty}} \sum_{{i=1}}^{n} [f(x^*_i) - g(x^*_i)]\Delta x 1.A=nlimi=1n[f(xi)g(xi)]Δx

我们认识到(1)中的极限是 f − g f - g fg 的定积分。因此,我们得到如下的面积公式:

  1. 由曲线 y = f ( x ) y = f(x) y=f(x) y = g ( x ) y = g(x) y=g(x) 和直线 x = a x = a x=a x = b x = b x=b 围成的区域面积 A A A(其中 f f f g g g 是连续的,且对于 [ a , b ] [a, b] [a,b] 内的所有 x x x f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)g(x))为:
    A = ∫ a b [ f ( x ) − g ( x ) ] d x A = \int_{a}^{b} [f(x) - g(x)] dx A=ab[f(x)g(x)]dx

注意,在特殊情况下,当 g ( x ) = 0 g(x) = 0 g(x)=0 时, S S S f f f 的图像下方的区域,而我们对面积(1)的通用定义则简化为我们在前面(定义 4.1.2)给出的定义。

f f f g g g 都为正的情况下,你可以从图3中看到为什么公式(2)成立:
在这里插入图片描述

A = [ 面积在 y = f ( x ) 下方 ] − [ 面积在 y = g ( x ) 下方 ] A = [\text{面积} \text{在} y = f(x) \text{下方}] - [\text{面积} \text{在} y = g(x) \text{下方}] A=[面积y=f(x)下方][面积y=g(x)下方]

= ∫ a b f ( x ) d x − ∫ a b g ( x ) d x = ∫ a b [ f ( x ) − g ( x ) ] d x = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx =abf(x)dxabg(x)dx=ab[f(x)g(x)]dx

例1 求出被曲线 y = x 2 + 1 y = x^2 + 1 y=x2+1 上方,曲线 y = x y = x y=x 下方,以及 x = 0 x = 0 x=0 x = 1 x = 1 x=1 两侧界限围成的区域的面积。

该区域如图4所示。上边界曲线为 y = x 2 + 1 y = x^2 + 1 y=x2+1,下边界曲线为 y = x y = x y=x。因此我们使用公式(2),令 f ( x ) = x 2 + 1 f(x) = x^2 + 1 f(x)=x2+1 g ( x ) = x g(x) = x g(x)=x a = 0 a = 0 a=0 b = 1 b = 1 b=1
在这里插入图片描述

A = ∫ 0 1 [ ( x 2 + 1 ) − x ]   d x = ∫ 0 1 ( x 2 − x + 1 )   d x = [ x 3 3 − x 2 2 + x ] 0 1 = ( 1 3 − 1 2 + 1 ) = 5 6 \begin{align*} A &= \int_{0}^{1} [(x^2 + 1) - x] \, dx = \int_{0}^{1} (x^2 - x + 1) \, dx\\ &= \left[ \frac{x^3}{3} - \frac{x^2}{2} + x \right]_{0}^{1} = \left(\frac{1}{3} - \frac{1}{2} + 1 \right) = \frac{5}{6} \end{align*} A=01[(x2+1)x]dx=01(x2x+1)dx=[3x32x2+x]01=(3121+1)=65

在图4中,我们绘制了一个典型的宽度为 Δ x \Delta x Δx 的近似矩形,以提醒我们面积是如何根据公式(1)定义的。通常,当我们为面积设置积分时,绘制区域以确定顶部曲线 y T y_T yT、底部曲线 y B y_B yB 以及图5中的典型近似矩形是很有帮助的。然后,典型矩形的面积为 ( y T − y B ) Δ x (y_T - y_B) \Delta x (yTyB)Δx,且公式

A = lim ⁡ n → ∞ ∑ i = 1 n ( y T − y B ) Δ x = ∫ a b ( y T − y B )   d x A = \lim_{{n \to \infty}} \sum_{{i=1}}^{n} (y_T - y_B) \Delta x = \int_{a}^{b} (y_T - y_B) \, dx A=nlimi=1n(yTyB)Δx=ab(yTyB)dx

总结了将所有典型矩形的面积(在极限意义上)相加的过程。

注意,在图5中,左侧边界缩小为一个点,而在图3中,右侧边界缩小为一个点。在下一个例子中,两侧边界都缩小为一个点,因此第一步是找到 a a a b b b

在这里插入图片描述

例2 求出由抛物线 y = x 2 y = x^2 y=x2 y = 2 x − x 2 y = 2x - x^2 y=2xx2 围成的区域的面积。

在这里插入图片描述

我们首先通过求解它们的方程来找到抛物线的交点。方程为 x 2 = 2 x − x 2 x^2 = 2x - x^2 x2=2xx2,或 2 x ( x − 1 ) = 0 2x(x - 1) = 0 2x(x1)=0,所以 x = 0 x = 0 x=0 1 1 1。交点为 ( 0 , 0 ) (0, 0) (0,0) ( 1 , 1 ) (1, 1) (1,1)

从图6中可以看出,上下边界分别为

y T = 2 x − x 2 和 y B = x 2 y_T = 2x - x^2 \quad \text{和} \quad y_B = x^2 yT=2xx2yB=x2

一个典型矩形的面积为

( y T − y B ) Δ x = ( 2 x − x 2 − x 2 ) Δ x (y_T - y_B)\Delta x = (2x - x^2 - x^2)\Delta x (yTyB)Δx=(2xx2x2)Δx

这个区域位于 x = 0 x = 0 x=0 x = 1 x = 1 x=1 之间。因此总面积为

A = ∫ 0 1 ( 2 x − 2 x 2 )   d x = 2 ∫ 0 1 ( x − x 2 )   d x = 2 [ x 2 2 − x 3 3 ] 0 1 = 2 ( 1 2 − 1 3 ) = 1 3 \begin{align*} A &= \int_{0}^{1} (2x - 2x^2) \, dx = 2\int_{0}^{1} (x - x^2) \, dx\\ &= 2 \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_{0}^{1} = 2 \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{3} \end{align*} A=01(2x2x2)dx=201(xx2)dx=2[2x23x3]01=2(2131)=31

有时确切找到两个曲线的交点是困难的,甚至是不可能的。如在以下示例中所示,我们可以使用图形计算器或计算机找到交点的近似值,然后像之前一样继续计算。

例3 求出由曲线 y = x x 2 + 1 + 1 y = \frac{x}{\sqrt{x^2 + 1}} + 1 y=x2+1 x+1 y = x 4 − x y = x^4 - x y=x4x 围成的区域的近似面积。

如果我们尝试找到精确的交点,则需要解方程

x x 2 + 1 = x 4 − x \frac{x}{\sqrt{x^2 + 1}} = x^4 - x x2+1 x=x4x

这看起来是一个非常难以精确求解的方程(事实上,它几乎不可能精确求解),因此我们使用图形设备绘制图7中的两条曲线。一个交点是原点。我们向另一个交点进行放大,发现 x ≈ 1.18 x \approx 1.18 x1.18。(如果需要更高的精度,我们可以使用牛顿法或在图形设备上进行数值求解。)因此,曲线之间的区域的近似面积为
在这里插入图片描述

A ≈ ∫ 0 1.18 [ x x 2 + 1 − ( x 4 − x ) ] d x A \approx \int_{0}^{1.18} \left[\frac{x}{\sqrt{x^2 + 1}} - (x^4 - x)\right] dx A01.18[x2+1 x(x4x)]dx

为了解第一个积分项,我们使用代换 u = x 2 + 1 u = x^2 + 1 u=x2+1。那么 d u = 2 x   d x du = 2x \, dx du=2xdx,当 x = 1.18 x = 1.18 x=1.18 时, u ≈ 2.39 u \approx 2.39 u2.39;当 x = 0 x = 0 x=0 时, u = 1 u = 1 u=1。因此

A ≈ 1 2 ∫ 1 2.39 d u u − ∫ 0 1.18 ( x 4 − x ) d x = u ∣ 1 2.39 − [ x 5 5 − x 2 2 ] 0 1.18 = 2.39 − 1 − ( ( 1.18 ) 5 5 − ( 1.18 ) 2 2 ) ≈ 0.785 \begin{align*} A &\approx \frac{1}{2} \int_{1}^{2.39} \frac{du}{\sqrt{u}} - \int_{0}^{1.18} \left(x^4 - x\right) dx\\ &= \sqrt{u}\Big|_{1}^{2.39} - \left[\frac{x^5}{5} - \frac{x^2}{2}\right]_{0}^{1.18}\\ &= \sqrt{2.39} - 1 - \left(\frac{(1.18)^5}{5} - \frac{(1.18)^2}{2}\right)\\ &\approx 0.785 \end{align*} A2112.39u du01.18(x4x)dx=u 12.39[5x52x2]01.18=2.39 1(5(1.18)52(1.18)2)0.785

例4 图8显示了两辆车A和B的速度曲线,它们从并排起步并沿着同一条道路行驶。曲线之间的面积代表什么?使用中点法则进行估计。
在这里插入图片描述

我们从第4.4节知道,速度曲线A下的面积表示汽车A在前16秒内行驶的距离。同样,曲线B下的面积表示汽车B在这段时间内行驶的距离。因此,这些曲线之间的面积,即曲线下面积的差值,是16秒后两辆车之间的距离。我们从图表中读取速度,并将其转换为每秒英尺(1英里/小时 = 5280 3600 \frac{5280}{3600} 36005280英尺/秒)。

我们使用具有4个区间的中点法则,因此 Δ t = 4 \Delta t = 4 Δt=4。区间的中点为 t ˉ 1 = 2 \bar{t}_1 = 2 tˉ1=2, t ˉ 2 = 6 \bar{t}_2 = 6 tˉ2=6, t ˉ 3 = 10 \bar{t}_3 = 10 tˉ3=10, 和 t ˉ 4 = 14 \bar{t}_4 = 14 tˉ4=14。我们估计16秒后两车之间的距离如下:

∫ 0 16 ( v A − v B )   d t ≈ Δ t [ 13 + 23 + 28 + 29 ] = 4 ( 93 ) = 372   ft \int_{0}^{16} (v_A - v_B) \, dt \approx \Delta t [13 + 23 + 28 + 29] = 4(93) = 372 \, \text{ft} 016(vAvB)dtΔt[13+23+28+29]=4(93)=372ft

如果我们需要计算曲线 y = f ( x ) y = f(x) y=f(x) y = g ( x ) y = g(x) y=g(x) 之间的面积,其中对于某些 x x x f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)g(x),而对于其他 x x x g ( x ) ≥ f ( x ) g(x) \geq f(x) g(x)f(x),那么我们将给定区域 S S S 分割成若干小区域 S 1 , S 2 , … S_1, S_2, \ldots S1,S2,,每个区域的面积分别为 A 1 , A 2 , … A_1, A_2, \ldots A1,A2,,如图11所示。然后我们定义区域 S S S 的面积为这些小区域 S 1 , S 2 , … S_1, S_2, \ldots S1,S2, 的面积之和,即 A = A 1 + A 2 + ⋯ A = A_1 + A_2 + \cdots A=A1+A2+。因为
在这里插入图片描述

∣ f ( x ) − g ( x ) ∣ = { f ( x ) − g ( x ) 当  f ( x ) ≥ g ( x ) g ( x ) − f ( x ) 当  g ( x ) ≥ f ( x ) |f(x) - g(x)| = \begin{cases} f(x) - g(x) & \text{当 } f(x) \geq g(x)\\ g(x) - f(x) & \text{当 } g(x) \geq f(x) \end{cases} f(x)g(x)={f(x)g(x)g(x)f(x) f(x)g(x) g(x)f(x)

我们有以下关于 A A A 的表达式:

  1. 曲线 y = f ( x ) y = f(x) y=f(x) y = g ( x ) y = g(x) y=g(x) 之间、在 x = a x = a x=a x = b x = b x=b 之间的面积 A A A
    A = ∫ a b ∣ f ( x ) − g ( x ) ∣   d x A = \int_a^b |f(x) - g(x)| \, dx A=abf(x)g(x)dx

在计算公式 (3) 中的积分时,我们仍然必须将其拆分为对应于 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, 的积分。

以下是图片内容的中文翻译:

例6 求由曲线 y = sin ⁡ x y = \sin x y=sinx y = cos ⁡ x y = \cos x y=cosx x = 0 x = 0 x=0 x = π 2 x = \frac{\pi}{2} x=2π 所围成的区域的面积。

交点发生在 sin ⁡ x = cos ⁡ x \sin x = \cos x sinx=cosx 时,即当 x = π 4 x = \frac{\pi}{4} x=4π 时(因为 0 ≤ x ≤ π 2 0 \leq x \leq \frac{\pi}{2} 0x2π)。该区域如图 12 所示。
在这里插入图片描述

注意,当 0 ≤ x ≤ π 4 0 \leq x \leq \frac{\pi}{4} 0x4π 时, cos ⁡ x ≥ sin ⁡ x \cos x \geq \sin x cosxsinx;而当 π 4 ≤ x ≤ π 2 \frac{\pi}{4} \leq x \leq \frac{\pi}{2} 4πx2π 时, sin ⁡ x ≥ cos ⁡ x \sin x \geq \cos x sinxcosx。因此,所需面积为

A = ∫ 0 π / 4 ∣ cos ⁡ x − sin ⁡ x ∣   d x + ∫ π / 4 π / 2 ∣ sin ⁡ x − cos ⁡ x ∣   d x = A 1 + A 2 = ∫ 0 π / 4 ( cos ⁡ x − sin ⁡ x )   d x + ∫ π / 4 π / 2 ( sin ⁡ x − cos ⁡ x )   d x = [ sin ⁡ x + cos ⁡ x ] 0 π / 4 + [ − cos ⁡ x − sin ⁡ x ] π / 4 π / 2 = ( 1 2 + 1 2 − 0 − 1 ) + ( − 0 − 1 + 1 2 + 1 2 ) = 2 2 − 2 \begin{align*} A &= \int_0^{\pi/4} |\cos x - \sin x| \, dx + \int_{\pi/4}^{\pi/2} |\sin x - \cos x| \, dx = A_1 + A_2\\ &= \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx\\ &= \left[\sin x + \cos x \right]_0^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi/2} \\ &= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1\right) + \left(-0 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)\\ &= 2\sqrt{2} - 2 \end{align*} A=0π/4cosxsinxdx+π/4π/2sinxcosxdx=A1+A2=0π/4(cosxsinx)dx+π/4π/2(sinxcosx)dx=[sinx+cosx]0π/4+[cosxsinx]π/4π/2=(2 1+2 101)+(01+2 1+2 1)=22 2

在这个特定的例子中,我们可以通过注意到该区域关于 x = π 4 x = \frac{\pi}{4} x=4π 是对称的,从而节省一些工作量,因此

A = 2 A 1 = 2 ∫ 0 π / 4 ( cos ⁡ x − sin ⁡ x )   d x A = 2A_1 = 2 \int_0^{\pi/4} (\cos x - \sin x) \, dx A=2A1=20π/4(cosxsinx)dx

某些区域最好将 x x x 视为 y y y 的函数。如果一个区域由曲线 x = f ( y ) x = f(y) x=f(y) x = g ( y ) x = g(y) x=g(y) y = c y = c y=c y = d y = d y=d 所界定,其中 f f f g g g 是连续的,且 f ( y ) ≥ g ( y ) f(y) \geq g(y) f(y)g(y) 对于 c ≤ y ≤ d c \leq y \leq d cyd 成立(见图13),那么其面积 A A A

A = ∫ c d [ f ( y ) − g ( y ) ] d y A = \int_c^d \left[ f(y) - g(y) \right] dy A=cd[f(y)g(y)]dy

如果我们写 x R x_R xR 作为右边界, x L x_L xL 作为左边界,那么,如图14所示,我们有

A = ∫ c d ( x R − x L ) d y A = \int_c^d \left( x_R - x_L \right) dy A=cd(xRxL)dy

这里一个典型的近似矩形的尺寸为 x R − x L x_R - x_L xRxL Δ y \Delta y Δy
在这里插入图片描述
以下是图片内容的中文翻译:

例7 求由直线 y = x − 1 y = x - 1 y=x1 和抛物线 y 2 = 2 x + 6 y^2 = 2x + 6 y2=2x+6 所围成的区域的面积。

通过解这两个方程,我们发现交点是 ( − 1 , − 2 ) (-1, -2) (1,2) ( 5 , 4 ) (5, 4) (5,4)。我们解出抛物线方程的 x x x 值,并注意到从图15可以看出左边界和右边界曲线分别为
在这里插入图片描述

x L = 1 2 y 2 − 3 x_L = \frac{1}{2}y^2 - 3 xL=21y23

x R = y + 1 x_R = y + 1 xR=y+1
我们必须在适当的 y y y 值范围内积分,即从 y = − 2 y = -2 y=2 y = 4 y = 4 y=4。因此,

A = ∫ − 2 4 ( x R − x L )   d y = ∫ − 2 4 [ ( y + 1 ) − ( 1 2 y 2 − 3 ) ] d y = ∫ − 2 4 ( − 1 2 y 2 + y + 4 ) d y = − 1 2 ( y 3 3 ) + y 2 2 + 4 y ∣ − 2 4 = − 1 6 ( 64 ) + 8 + 16 − ( 8 3 + 2 − 8 ) = 18 \begin{align*} A &= \int_{-2}^{4} (x_R - x_L) \, dy = \int_{-2}^{4} \left[ (y + 1) - \left(\frac{1}{2}y^2 - 3\right) \right] dy\\ &= \int_{-2}^{4} \left(-\frac{1}{2}y^2 + y + 4\right) dy\\ &= -\frac{1}{2} \left(\frac{y^3}{3}\right) + \frac{y^2}{2} + 4y \Bigg|_{-2}^{4}\\ &= -\frac{1}{6}(64) + 8 + 16 - \left(\frac{8}{3} + 2 - 8\right) = 18\\ \end{align*} A=24(xRxL)dy=24[(y+1)(21y23)]dy=24(21y2+y+4)dy=21(3y3)+2y2+4y 24=61(64)+8+16(38+28)=18

注意: 我们也可以通过对 x x x 进行积分来求解示例 7 中的面积,但计算过程会更加复杂。因为底边界由两条不同的曲线组成,这将意味着需要将区域分成两部分并分别计算图 16 中标记为 A 1 A_1 A1 A 2 A_2 A2 的面积。我们在示例 7 中使用的方法要容易得多。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值