【矩阵论】11——Jordan标准型——线性变换的特征值与特征向量

本系列文章由Titus_1996 原创,转载请注明出处。  

文章链接:https://blog.csdn.net/Titus_1996/article/details/83177254

本系列文章使用的教材为《矩阵论》(第二版),杨明,刘先忠编,华中科技大学出版社。


定义

假设T在某组基{α1,α2,...αn}下的矩阵为A,ξ是T关于λ的特征向量。则有

ξ=(α1,α2,...αn)X

对上式左右两边做线性变换,得到

T(ξ)=(α1,α2,...αn)AX

又因为T(ξ)=λξ=λ(α1,α2,...αn)X=(α1,α2,...αn)λX,对比可知AX=λX。这就有了以下定理:

总结:

  • 在特定基下的T的矩阵的特征值就是线性变换T的特征值。

  • 而T的特征向量为基与A特征向量的乘积。

  • 特征值是由T本身决定的,与基和矩阵的选择无关。


线性变换特征值和特征向量的计算步骤:

  1. 选择一组特定基,求对应矩阵A

  2. 解|λE-A|=0,求λ

  3. 将λ分别带回(λE-A)X=0,求特征向量。

其实这个步骤就是线性代数中求矩阵的特征值与特征向量的步骤,只不过这里矩阵的特征值是线性变换的特征值,而特征向量却不是。


下面讨论线性变换T的特征向量的性质

特征子空间

每一个特征值对应一个特征子空间。

注意:并不是所有特征子空间中的向量都是λ对应的特征向量。必须减去零向量,Vλ-{0},因为特征向量是非零的。而在第一章讲到子空间中是包含零元的。所以必须减去零元。

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值