Chapter 13 Factor Analysis
本篇是第十三章,内容是因子分析。
这篇博客的完整内容包含各类数学表达。可以见我CSDN和hexo搭的个人博客。
CSDN博客
1 因子分析概念
因子分析是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。
即一种用来在众多变量中辨别、分析和归结出变量间的相互关系并用简单的变量(因子)来描述这种关系的数据分析方法。
寻求基本结构
通过因子分析,找出几个较少的有实际意义的因子,反映出原来数据的基本结构。
通常找出的这组观察不到的因子概括了原始的变量的大多数信息。
数据简化
强相关问题会对分析带来困难。
通过因子分析,可以用所找出的少数几个因子代替原来的变量做回归分析、聚类分析、判别分析等。
因子分析的用途
产生新的、更少的变量以便为后续的回归和其他分析做基础。
识别概念或产品的基本感知和特性。
改善市场研究领域多元测量的结构与方法。
2 因子分析模型
数学模型
因子分析模型的性质
1、原始变量X的协方差矩阵的分解
A是因子模型的系数
D的主对角线上的元素值越小,则公共因子共享的成分越多。
2、模型不受计量单位的影响。
3、因子载荷不是惟一的:设T为一个p×p的正交矩阵,令A=AT, F=T'F也是一个满足因子模型条件的因子载荷。
因子载荷矩阵中的统计特征
因子载荷是第i个变量与第j个公共因子的相关系数。
变量的共同度是因子载荷矩阵的第i行的元素的平方和。
所有的公共因子和特殊因子对变量的贡献为1。
因子

因子分析是一种数据简化技术,通过寻找少数几个因子来反映众多变量的主要信息。本文介绍了因子分析的概念、模型、因子载荷矩阵的估计方法,特别是极大似然估计法,并探讨了因子旋转和因子得分的计算。此外,还对比了因子分析与主成分分析的区别,并展示了R语言实现因子分析的示例。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



