对圆柱面的曲面积分_计算对面积的曲面积分zds 圆柱面x^2+y^2=1介于平面z=0 和z=3之间的部分...

加个du盖子S1:x²+y²≤4的上侧.S1和S构成封闭zhi曲面的外侧.对daoS1+S应用GAUSS,有 ∫专∫ (z^2+x)dydz-zdxdy = ∫∫∫ 0 dv=0.S1+S Ω盖子属S1的曲面积分中,dz=0,z=2,故 ∫∫ (z^2+x)dydz-zdxdy = -2 ∫∫ dxdy =-8π.S1 Dxy ∫∫ (z^2+x)dydz-zdxdy = 0-(-8π)=8π.S,你知道外侧不?就是将S图形用平面z=0及z=2截取部分加上平面z=2形成一封闭图形,其外侧就是:介于平面z=0及z=2之间的部分的下侧和平面z=2的上侧的总称追问求详细解答过程,你知道外侧不?就是将S图形用平面z=0及z=2截取部分加上平面z=2形成一封闭图形,其外侧就是:介于平面z=0及z=2之间的部分的下侧和平面z=2的上侧的总称追问求详细解答过程www.mh456.com防采集。

本回答被提问者采纳

是∑不是S吧。

计算曲面积分∫∫zdydz,其中∑为锥面z=x^2+y^2介于平面z=0及z=3之间部分的下侧 首页 问题 全部问题 经济金融 企业管理 法律法规 社会民生 科学

答:圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0 平面z=1+x的投影:x^2+y^2

应该是等于0࿰

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要确定圆柱面和锥面的截面形状。将圆柱面和锥面联立,消去 $z$,得到: $$x^2 + y^2 = 2az^2$$ 这是一个在 $xOy$ 平面上的圆形,半径为 $r=\sqrt{2az^2}$。现在我们需要确定积分区域。首先考虑 $x$ 和 $y$ 的范围。由于我们只考虑圆柱面和锥面的交集,因此圆柱面的范围为 $-a\le x \le a$,$-\sqrt{a^2-x^2} \le y \le \sqrt{a^2-x^2}$。锥面的范围为 $0\le z \le \sqrt{x^2+y^2}$,因此 $x$ 和 $y$ 的范围也受到了限制,即 $x^2+y^2\le 2az^2$。 接下来我们需要确定积分的函数。根据题目要求,我们需要计算截面的面积。由于截面是一个圆形,因此面积公式为 $A=\pi r^2$。将 $r$ 代入,得到: $$A = \pi(2az^2) = 2\pi a z^2$$ 现在我们可以写出积分式: $$\iiint\limits_V 2\pi a z^2\,\mathrm{d}V$$ 其中 $V$ 是积分区域。利用柱坐标系转换,得到: $$\begin{aligned} \iiint\limits_V 2\pi a z^2\,\mathrm{d}V &= \int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} \int_0^{\sqrt{2az^2-x^2-y^2}} 2\pi a z^2 \cdot r \,\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}x \\ &= \int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} \left[\pi a z^2 (2az^2-x^2-y^2)\right]_{z=0}^{z=\sqrt{2az^2-x^2-y^2}}\,\mathrm{d}y\,\mathrm{d}x \\ &= \int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} \pi a z^2 \left(2az^2-x^2-y^2\right)\,\mathrm{d}y\,\mathrm{d}x \\ &= \int_{-a}^a \pi a \left[\frac{1}{5}z^5 - \frac{1}{3}z^3\left(x^2+y^2\right)\right]_{z=0}^{z=\sqrt{2az^2-x^2}}\,\mathrm{d}x \\ &= \int_{-a}^a \pi a \left[\frac{2a^2x^2}{5} - \frac{a^4}{3}\right]\,\mathrm{d}x \\ &= \frac{4}{15}\pi a^3\int_{-a}^a (3x^2-2a^2)\,\mathrm{d}x \\ &= \frac{4}{15}\pi a^3 \left[x^3 - \frac{2}{3}a^2 x\right]_{x=-a}^{x=a} \\ &= \frac{16}{15}\pi a^4 \end{aligned}$$ 因此,圆柱面被锥面和 $xOy$ 平面所截部分面积积分为 $\frac{16}{15}\pi a^4$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值