自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间。下面介绍自动求导机制的基本用法。#自动求导机制
import torch
from torch.autograd import Variable
# 1、简单的求导(求导对象是标量)
x = Variable(torch.Tensor([2]),requires_grad=True)
y = (x + 2) ** 2 + 3
print(y)
y.backward()
print(x.grad)
#对矩阵求导
x1 = Variable(torch.randn(10,20),requires_grad=True)
y1 = Variable(torch.randn(10,1),requires_grad=True)
W = Variable(torch.randn(20,1),requires_grad=True)
J = torch.mean(y1 - torch.matmul(x1,W)) #matmul表示做矩阵乘法
J.backward()
print(x1.grad)
print(y1.grad)
print(W.grad)tensor([19.], grad_fn=)
tensor([8.])
tensor([[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454],
[-0.1636, 0.0904, 0.0446, -0.1052, -0.2323, 0.0129, -0.1532, 0.0544,
0.0231, -0.0993, -0.0387, -0.1762, 0.0477, 0.1552, 0.0493, 0.0144,
-0.1581, 0.1986, -0.0226, -0.0454]])
tensor([[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000],
[0.1000]])
tensor([[ 0.0224],
[ 0.0187],
[-0.2078],
[ 0.5092],
[ 0.0677],
[ 0.3497],
[-0.4575],
[-0.5480],
[ 0.4228],
[-0.0869],
[ 0.2876],
[-0.1714],
[ 0.0985],
[-0.1364],
[-0.1502],
[-0.1372],
[-0.0999],
[-0.0006],
[-0.0544],
[-0.0678]])#复杂情况的自动求导 多维数组自动求导机制
import torch
from torch.autograd import Variable
x = Variable(torch.FloatTensor([3]),requires_grad=True)
y = x ** 2 + x * 2 + 3
y.backward(retain_graph=True) #保留计算图
print(x.grad)
y.backward()#不保留计算图
print(x.grad) #得到的是第一次求导的值加上第二次求导的值 8 + 8tensor([8.])
tensor([16.])#小练习,向量对向量求导
import torch
from torch.autograd import Variable
x = Variable(torch.Tensor([2,3]),requires_grad = True)
k = Variable(torch.zeros_like(x))
k[0] = x[0]**2 + 3 * x[1]
k[1] = 2*x[0] + x[1] ** 2
print(k)
j = torch.zeros(2,2)
k.backward(torch.FloatTensor([1,0]),retain_graph = True)
j[0] = x.grad.data
x.grad.zero_()
k.backward(torch.FloatTensor([0,1]),retain_graph = True)
j[1] = x.grad.data
print(j)
tensor([13., 13.], grad_fn=)
tensor([[4., 3.],
[2., 6.]])