AAAI 2022 顶会投稿须知!附重要时间节点

本文提供了AAAI 2022会议的投稿相关信息,包括作者注册、论文提交、截止日期及重要时间节点。会议将在加拿大温哥华举行,投稿平台为CMT。作者需要遵循官网的论文格式和排版要求。文章还提醒了作者关于DDL的重要日期,并提到恒源云提供GPU服务器支持,助力人工智能领域的研究和顶会投稿。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章来源 | 恒源云社区(专注人工智能/深度学习云GPU服务器训练平台,官方体验网址:https://gpushare.com

ICCV2021刚落下帷幕,没中的哀嚎一片,新一届的AAAI又要来了,本着物尽其用的原则,改改再投一次,说不定运气好,噢不,是实力终被发现,就一举拿下了呢。

这届AAAI会议将于明年2月举行,又是熟悉的地方,加拿大温哥华,为期一周左右,在此之前,大家将经历半年的投稿厮杀,卷起来快!

以下是AAAI-22官网,注册投稿都在这里,记得收藏一下: 

AAAI-22: Call for Papers | AAAI 2022 Conference​aaai.org/Conferences/AAAI-22/aaai22call/

如官网call for papers所示,上面一行是提交地址,还是老地方CMT,地址是:

https://cmt3.research.microsoft.com/User/Login?ReturnUrl=%2FAAAI2022​cmt3.research.microsoft.com/User/Login?ReturnUrl=%2FAAAI2022

下面一行是作者投稿说明,包括论文格式、排版和模版等,直接下载查阅即可。

 

这边整理了一下投稿的timeline,大家可以参考下,如果翻译不对,请在评论区指正,先上一张官网时间节点的截图:

 

*截图为官方时间(UTC-12),非北京时间(UTC+8),两者相差20个小时,以下时间节点,为本人计算后的北京时间

作者注册开放:2021.7.26/27(大家注册好没

论文提交开放:2021.8.2/3(已经可以提交啦

摘要提交截止:2021.8.31 19:59

完整论文提交截止:2021.9.9 19:59(ddl警告

补充材料/代码提交截止:2021.9.12 19:59

第一阶段拒稿通知:2021.10.15/16(首批幸运鹅

投稿者rebuttal期限:2021.11.2/3-11.5/6

最后阶段论文接收/拒稿通知:2021.11.29/30(最终锦鲤

最后,恒源云作为专注人工智能的gpu加速平台,无论是竞赛,还是顶会,都给予了充分体验gpu的超级时长(找客服Alice领取),平台支持所有主流框架,3090、2080ti等机型较多,云端训练轻松上手,助力你的顶会之旅~

### 关于2022AAAI会议中的时间序列预测研究 在多变量时间序列分类领域,TimeMIL 提出了基于时间感知的多个实例学习方法来改进模型性能[^1]。尽管此工作主要聚焦于分类而非预测,其引入的时间意识机制可能启发了其他针对时间序列预测的研究。 对于特定探讨时间序列预测的文章,在2022年的AAAI会议上确实存在一些值得注意的工作。然而,具体提及的两篇引用并未直接涉及该主题。一篇专注于生物医学关系抽取中的核化哈希表示法[^2],而另一篇则如前所述关注的是时间序列分类问题。 为了更精确地定位到2022AAAI上有关时间序列预测的内容,建议查阅官方发布的会议记录或通过学术搜索引擎使用关键词组合(例如:“time series prediction”,“AAAI 2022”)进行检索。通常这类论文会集中在机器学习、数据挖掘以及人工智能应用等领域内讨论如何利用先进的算法和技术实现对未来趋势的有效预估。 此外,可以考虑探索如下几个方面: - **新型架构设计**:近年来,随着深度学习技术的发展,许多新的网络结构被应用于解决复杂的时间序列预测挑战。 - **跨学科融合**:除了传统的方法外,还有不少研究尝试将不同领域的知识结合起来用于增强预测效果,比如结合物理规律或者经济理论等外部信息源。 - **不确定性量化**:考虑到实际应用场景下的噪声干扰等因素,部分学者也在致力于开发能够评估并处理不确定性的预测框架。 ```python import pandas as pd from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 假设我们有一个时间序列数据集 df df = pd.read_csv('timeseries_data.csv') X_train, X_test, y_train, y_test = train_test_split(df.drop(columns=['target']), df['target'], test_size=0.2) model = Sequential([ LSTM(50, activation='relu', input_shape=(n_timesteps, n_features)), Dense(1) ]) model.compile(optimizer='adam', loss='mse') history = model.fit(X_train, y_train, epochs=200, validation_data=(X_test, y_test)) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值