A5000 VS 3090,谁更强?

为了迎接618的到来,平台上新了数百台机器,其中,2021年上市的A5000,相对于更早发布的30系列,大家可能还不太熟悉,这边先放上某东618的价格截图,大家参考一下。

由于显存同为24G,也是采用了最新的安培架构,A5000自然免不了和3090的对比。

从一般的应用场景来看,3090属于消费级游戏显卡,而A5000是高端专业计算卡和图形卡,适用于AI、渲染、3D建模等具体场景。

而在深度学习领域,根据算法模型的差异,两者在实际表现中也各具优势,比如3090的单精度性能高于A5000,但在半精度和混合精度训练中,A5000的性价比又不输3090,甚至更为突出。

所以,这里不得不提及A5000的一些特点,比如,专业卡的配置更加兼容稳定;低功耗(230w)带来的出色效能;具备ECC(纠错码)可减少内存报错的困扰等。

为了方便大家对比和体验,GPUSHARE.COM针对A5000机型,上架了一系列618特惠活动,让大家能够低价、轻松地开启云GPU训练。

恒源云官网:gpushare.comicon-default.png?t=M4ADhttps://gpushare.com/

一、A5000尝新特价!消费送券!

 ▼ 包天限时85折

6.9至6.30活动期间,平台A5000专享限时降价特惠,低价格、高可用、高配置,每张GPU分配16核CPU+32G内存,按量活动价2.2元/小时,黄金会员仅需1.87元/小时。

比按量更实惠的,当然是包天(24小时)/包周(7天)了,本次A5000活动,包天折扣限时降至85折,与包周折扣持平。

▼ 消费送券 · 高达60元

6.9至6.30活动期间,A5000订单消费累计(实际支付)达一定金额,用户可获得相应的代金券奖励。

二、送黄金会员最多3个月!

上个月,平台首次尝试黄金会员抽奖,拿出了10个免费名额,参与用户人数超出预期,对此,GPUSHARE.COM坚持算力普惠和平等的理念,让更多用户享受黄金会员的折扣和权益,这次618特别准备了大量免费名额。

凡是符合以下任一条件的用户,即可获得1个月的免费黄金会员,权益与正式会员无异,同时,以下福利并不互斥,意味着,参与用户最多可获得 3个月黄金会员。

▼ 老用户回馈 · 送1个月黄金会员

6.9 18:00 左右,凡是在平台充值过的老用户(充值金额大于0元即可),已收到系统自动发放的1个月黄金会员。

▼ 学生福利 · 送1个月黄金会员

凡是6月(6.1-6.30)提交并通过学生认证的用户,充值晋升为青铜(学生充值50元即享)及以上等级,可联系客服领取1个月黄金会员,登记当天立刻发放,6.30截止领取。

▼ A5000包周 · 送1个月黄金会员

6.9至6.30活动期间,凡是包周A5000机器的用户,可联系客服领取1个月黄金会员,登记当天立刻发放,6.30截止领取。

三、618充值返券更多!

▼ 充值返代金券+优惠券 · 大升级

6.9至6.18活动期间,充值返代金券数量升级(可直接消费代金券专区机器),同时,还将发放同等金额的优惠券(适用于包天/周/月订单满减),仅限10天,结束后恢复至日常。

—— 我是6月活动说明 ——

· 以上活动内容,并不互斥,大家可同时参与
· 平台禁止刷券行为,一旦发现,礼券作无效处理,严重者将被封号,请大家友善参与平台活动
· 本次活动,解释权归恒源云所有,关于活动的福利领取、疑问咨询等,可以联系客服

### DeepSeek 不同版本对比表格 以下是基于提供的参考资料整理的 DeepSeek 各个版本的主要特性、技术亮点及硬件需求对比表: | 版本名称 | 技术特点 | 参数规模 | 性能优化 | 推荐应用场景 | 硬件配置要求 (最低) | |----------------|-----------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|---------------------------------------|------------------------------------------------------| | **DeepSeek LLM** | 奠定了基础架构,支持多语言和多种任务类型[^1] | 小于30B | 无特别说明 | 文本生成、简单对话 | CPU:8核;内存:16GB;显卡:RTX 3080 | | **DeepSeekMoE** | 使用混合专家(Mixture of Experts, MoE)策略,显著提高特定任务表现 | 大约50B | 高效利用计算资源,减少冗余操作 | 需要高精度的任务处理 | CPU:12核;内存:32GB;显卡:RTX 4090 或 A5000 | | **DeepSeek-V2** | 在效率与性能上进行了进一步优化,降低了推理延迟并提升了吞吐量 | 约40B | 高效的模型压缩技术和加速方法 | 实时应用、低延时需求场景 | CPU:10核;内存:24GB;显卡:RTX 4080 | | **DeepSeek-V3** | 参数规模大幅增加,性能较前代有明显提升,适用于复杂的任务 | 超过70B | 支持大规模分布式训练 | 科学研究、复杂数据分析 | CPU:16核;内存:48GB;显卡:A100 | | **DeepSeek-R1** | 化推理能力,在逻辑推导和理解方面表现出色[^2] | 可选范围广 (如 R1-7B 至 R1-32B)[^3] | 提供 INT4 量化选项以降低显存占用 | 长文本生成、企业级复杂任务 | 见具体型号配置 | | **DeepSeek 32B** | 属于 DeepSeek-R1 的一种变体,具有较大的参数规模,适合高性能需求的应用场景 | 32B | 经过 INT4 量化后可有效降低显存消耗至 9.8GB | 高质量内容创作 | CPU:12核;内存:32GB;显卡:RTX 3090 (量化后可用) | --- ### 示例代码:加载 DeepSeek 模型 以下是一个简单的 Python 示例,用于加载并测试 DeepSeek 模型: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "deepseek/large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "Explain the concept of artificial intelligence." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值