矩阵求导学习笔记(一)

总的来说,涉及矩阵和向量的求导不外乎五大类别,
- 向量对标量
- 标量对向量
- 向量对向量
- 矩阵对标量
- 标量对矩阵

  1. 向量对标量求导

  • 分子布局
向量y--->标量x求导,我们假定所有的向量都是列向量,


在分子布局下表示为,


而在分母布局下表示为,

2.标量对向量求导


3.向量对向量求导



4.标量对矩阵求导


5.矩阵对标量求导


总结,凡是对标量求导,结果的形式都要转置,而标量对向量和矩阵求导则位置保持
不动。这样总结方便我们记忆。


一些常见的求导:

首先,有矩阵A,和向量x



注意到,

于是利用向量对向量求导法则,我们有:


同理,




阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_39881922/article/details/79961665
文章标签: 数学 矩阵求导
上一篇人工智能实践:Tensorflow笔记(三)
下一篇向量、矩阵求导(二)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭