python如何爬虫股票数据_小白学 Python 爬虫(25):爬取股票信息

本文介绍了如何使用Python爬虫获取股票数据,包括股票代码列表和详细信息。通过分析网页元素和数据接口,利用Requests和PyQuery库进行请求和解析,最终将数据存储到MySQL数据库中。爬取过程中涉及了异常处理,确保数据抓取的完整性。
摘要由CSDN通过智能技术生成

908359-20191224084431041-1664613203.jpg

人生苦短,我用 Python

前文传送门:

引言

上一篇的实战写到最后没有用到页面元素解析,感觉有点小遗憾,不过最后的电影列表还是挺香的,真的推荐一看。

908359-20191224084432167-1692151417.jpg

本次选题是先写好代码再写的文章,绝对可以用到页面元素解析,并且还需要对网站的数据加载有一定的分析,才能得到最终的数据,并且小编找的这两个数据源无 ip 访问限制,质量有保证,绝对是小白练手的绝佳之选。

郑重声明: 本文仅用于学习等目的。

分析

首先要爬取股票数据,肯定要先知道有哪些股票吧,这里小编找到了一个网站,这个网站上有股票的编码列表:https://hq.gucheng.com/gpdmylb.html 。

908359-20191224084433399-343954330.png

打开 Chrome 的开发者模式,将股票代码一个一个选出来吧。具体过程小编就不贴了,各位同学自行实现。

我们可以将所有的股票代码存放在一个列表中,剩下的就是找一个网站,循环的去将每一只股票的数据取出来咯。

908359-20191224084436523-1979123395.png

想必各位聪明的同学已经发现了,这个链接中的 000001 就是股票代码。

我们接下来只需要拼接这个链接,就能源源不断的获取到我们想要的数据。

实战

首先,还是先介绍一下本次实战用到的请求库和解析库为: Requests 和 pyquery 。数据存储最后还是落地在 Mysql 。

获取股票代码列表

第一步当然是先构建股票代码列表咯,我们先定义一个方法:

def get_stock_list(stockListURL):

r =requests.get(stockListURL, headers = headers)

doc = PyQuery(r.text)

list = []

# 获取所有 section 中 a 节点,并进行迭代

for i in doc('.stockTable a').items():

try:

href = i.attr.href

list.append(re.findall(r"\d{6}", href)[0])

except:

continue

list = [item.lower() for item in list] # 将爬取信息转换小写

return list

将上面的链接当做参数传入,大家可以自己运行下看下结果,小编这里就不贴结果了,有点长。。。

获取详情数据

详情的数据看起来好像是在页面上的,但是,实际上并不在,实际最终获取数据的地方并不是页面,而是一个数据接口。

http://qd.10jqka.com.cn/quote.php?cate=real&type=stock&callback=showStockDate&return=json&code=000001

至于是怎么找出来,小编这次就不说,还是希望各位想学爬虫的同学能自己动动手,去寻找一下,多找几次,自然就摸到门路了。

现在数据接口有了,我们先看下返回的数据吧:

showStockDate({"info":{"000001":{"name":"\u5e73\u5b89\u94f6\u884c"}},"data":{"000001":{"10":"16.13","8":"16.14","9":"15.87","13":"78795234.00","19":"1262802470.00","7":"16.12","15":"40225508.00","14":"37528826.00","69":"17.73","70":"14.51","12":"5","17":"945400.00","264648":"0.010","199112":"0.062","1968584":"0.406","2034120":"9.939","1378761":"16.026","526792":"1.675","395720":"-948073.000","461256":"-39.763","3475914":"313014790000.000","1771976":"1.100","6":"16.12","11":""}}})

很明显,这个结果并不是标准的 json 数据,但这个是 JSONP 返回的标准格式的数据,这里我们先处理下头尾,将它变成一个标准的 json 数据,再对照这页面的数据进行解析,最后将分析好的值写入数据库中。

def getStockInfo(list, stockInfoURL):

count = 0

for stock in list:

try:

url = stockInfoURL + stock

r = requests.get(url, headers=headers)

# 将获取到的数据封装进字典

dict1 = json.loads(r.text[14: int(len(r.text)) - 1])

print(dict1)

# 获取字典中的数据构建写入数据模版

insert_data = {

"code": stock,

"name": dict1['info'][stock]['name'],

"jinkai": dict1['data'][stock]['7'],

"chengjiaoliang": dict1['data'][stock]['13'],

"zhenfu": dict1['data'][stock]['526792'],

"zuigao": dict1['data'][stock]['8'],

"chengjiaoe": dict1['data'][stock]['19'],

"huanshou": dict1['data'][stock]['1968584'],

"zuidi": dict1['data'][stock]['9'],

"zuoshou": dict1['data'][stock]['6'],

"liutongshizhi": dict1['data'][stock]['3475914']

}

cursor.execute(sql_insert, insert_data)

conn.commit()

print(stock, ':写入完成')

except:

print('写入异常')

# 遇到错误继续循环

continue

这里我们加入异常处理,因为本次爬取的数据有些多,很有可能由于某些原因抛出异常,我们当然不希望有异常的时候中断数据抓取,所以这里添加异常处理继续抓取数据。

完整代码

我们将代码稍作封装,完成本次的实战。

import requests

import re

import json

from pyquery import PyQuery

import pymysql

# 数据库连接

def connect():

conn = pymysql.connect(host='localhost',

port=3306,

user='root',

password='password',

database='test',

charset='utf8mb4')

# 获取操作游标

cursor = conn.cursor()

return {"conn": conn, "cursor": cursor}

connection = connect()

conn, cursor = connection['conn'], connection['cursor']

sql_insert = "insert into stock(code, name, jinkai, chengjiaoliang, zhenfu, zuigao, chengjiaoe, huanshou, zuidi, zuoshou, liutongshizhi, create_date) values (%(code)s, %(name)s, %(jinkai)s, %(chengjiaoliang)s, %(zhenfu)s, %(zuigao)s, %(chengjiaoe)s, %(huanshou)s, %(zuidi)s, %(zuoshou)s, %(liutongshizhi)s, now())"

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36'

}

def get_stock_list(stockListURL):

r =requests.get(stockListURL, headers = headers)

doc = PyQuery(r.text)

list = []

# 获取所有 section 中 a 节点,并进行迭代

for i in doc('.stockTable a').items():

try:

href = i.attr.href

list.append(re.findall(r"\d{6}", href)[0])

except:

continue

list = [item.lower() for item in list] # 将爬取信息转换小写

return list

def getStockInfo(list, stockInfoURL):

count = 0

for stock in list:

try:

url = stockInfoURL + stock

r = requests.get(url, headers=headers)

# 将获取到的数据封装进字典

dict1 = json.loads(r.text[14: int(len(r.text)) - 1])

print(dict1)

# 获取字典中的数据构建写入数据模版

insert_data = {

"code": stock,

"name": dict1['info'][stock]['name'],

"jinkai": dict1['data'][stock]['7'],

"chengjiaoliang": dict1['data'][stock]['13'],

"zhenfu": dict1['data'][stock]['526792'],

"zuigao": dict1['data'][stock]['8'],

"chengjiaoe": dict1['data'][stock]['19'],

"huanshou": dict1['data'][stock]['1968584'],

"zuidi": dict1['data'][stock]['9'],

"zuoshou": dict1['data'][stock]['6'],

"liutongshizhi": dict1['data'][stock]['3475914']

}

cursor.execute(sql_insert, insert_data)

conn.commit()

print(stock, ':写入完成')

except:

print('写入异常')

# 遇到错误继续循环

continue

def main():

stock_list_url = 'https://hq.gucheng.com/gpdmylb.html'

stock_info_url = 'http://qd.10jqka.com.cn/quote.php?cate=real&type=stock&callback=showStockDate&return=json&code='

list = get_stock_list(stock_list_url)

# list = ['601766']

getStockInfo(list, stock_info_url)

if __name__ == '__main__':

main()

成果

最终小编耗时 15 分钟左右,成功抓取数据 4600+ 条,结果就不展示了。

示例代码

本系列的所有代码小编都会放在代码管理仓库 Github 和 Gitee 上,方便大家取用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值