三因素方差分析_菜鸟也爱数据分析之SPSS篇——多因素方差分析

本文通过SPSS进行多因素方差分析,探讨电价比和高峰时间范围对用电满意度的影响。结果显示,两者均有显著影响,且在电价比1.5:1和高峰时间9小时的组合下,用户满意度最高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一前言

上一篇,我们基于不同高峰时间范围的用电满意度的市场调查的数据,用单因素方差分析方法来帮助电力部门决策了是否需要分时段定电价的问题。好了,现在我们得出结论:分时段定电价是有必要的,那么如何来做分时段电价的方案呢,我们又要用到数据和数据分析啦。

二继续上一篇的栗子

我们来继续上一篇的栗子,第一步还是做市场调查,不过现在的调查内容会多一点,我们主要会考虑两个因素,一是电价比,即高峰电价与非高峰电价之间的比较,二是高峰时间范围。电价比选择三个水平,分别是1.5:1、2:1和3:1,高峰时间范围还是选用原来的3小时、5小时、7小时和9小时。在随机确定的受试对象中,要求他们对两个因素搭配下的用电满意度进行评分,评分值从60~100分,分值越高说明满意度越高,分值越低说明满意度越低。

根据排列组合,电价比与高峰时间范围的搭配方案有6种,那么各种方案下的满意度有没有差别呢,有的话,哪一种搭配方案下的满意度最高呢,这会我们就要用上多因素方差分析啦。你可能会说,有了上一篇单因素方差分析的基础,多因素方差分析不是类似么。嗯,是的,不过多因素方差分析考虑的东西可比单因素方差分析多了一点,你大概会说有那么麻烦么,其实也不麻烦,往下看。

三小白理解多因素方差分析

类似于单因素方差分析,多因素方差分析的核心内容则为,检验在不同控制变量的不同交叉水平下,各交叉分组下样本数据所来自的总体均值,有无显著性差异,进而判断多个因素是否对观测变量产生了显著影响。如果有显著影响,我们以两个控制因素A与B为例,那么观测变量的差异,我们则需要考虑是由控制因素A、B对观测变量的独立影响,以及控制因素A、B的交互作用,最后还有随机因素四个部分共同影响。

67a6d49d688a38697694cee3579c92b7.png

这里我们再来理解一下交互作用,即两个或多个控制变量在各水平搭配下对观测变量的影响。如果一个控制因素所产生的效应在另一个控制因素的不同水平下有明显差异,则称该两控制因素存在交互作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值