
什么是Bootstrap?为什么要用Bootstrap
全称:偏差校正的非参数百分位 Bootstrap 法
当变量不满足正态分布,就不能用传统的参数方法来估计置信区间并做出统计推断,而是采用自助抽样(Bootstrap)的方法,前提条件是样本能够代表总体。
Bootstrap法从给定的样本中有放回地重复取样以产生出许多样本, 一般抽取1000-5000(为什么是这个样本量?待补充)。简单来说,从原来的样本中,有放回的抽1000次,一次抽一个,得到新的样本,样本量为1000。
原理:(待补充)
Bootstrap应用与操作
- Bootstrap最广泛的应用是中介效应的检验。
(Baron
Bootstrap的优势:不要求正态分布,敏感性更高(更容易出来显著的结果)
Bootstrao法检验中介效应,以SPSS中Process插件为例:

第二步:设置参数。
从【Variables】中选择因变量、自变量、控制变量,这些变量将组成你的回归方程。
Model number选择4,这是给中介分析的模型编号,如果选择其他的就会报错。
Number of bootstrap samples, 就是前面讲过的bootstrap样本量,默认为5000, 一般在1000-5000之间,通常都会填1000或5000. Bootstrap样本量不同,跑出来的数据稍有不同。
同时要勾选save bootstrap estimates,以及 bootstrap inference for model coefficients.
点击 【确定】,得到运算结果

运算结果:



重点来了!!!!最直观的中介效应在这里!!!

用Bootstrap方法做中介效应的检验,并不是通过P值来判断的,而是根据(BootLLCI, BootULCI)这一区间是否包含0来判断。不包含0则中介效应显著,包含0则不显著。在给出的这个案例中,中介效应(间接效应)的值是0.1969,是显著的,自变量对因变量的总效应是0.9373,也就是说中介变量中介掉了21%的效应(0.1969/0.9373),这是一个不完全中介。
同时需要注意,以上的数字都是非标准化的效应值。SPSS只给出了标准化的中介效应的值,但是没有给出总效应、直接效应的标准化效应值。
实际上,使用标准化或非标准化的效应值来计算中介效应的占比,结果都是差不多的。
2. Bootstrap 非参数检验:当满足正态分布时,我们用T检验做差异分析,不满足时,用Bootstrap非参数检验。
【参考文献】:
温忠麟,叶宝娟.(2014).中介效应分析:方法和模型发展. 心理科学进展, 22(5): 731-745.