1 数组对象
创建数组
importnumpy as np
a= np.arange(10)
b= np.arange(2,10,1) #[2,10)步长为1
c = np.linspace(0,10,20) #[0,10]共20个
d = np.array([range(5)]) #用list/tuple创建数组
快速生成x*y的全零数组
a = np.zeros((3,4))
0~1的随机数
a = np.random.rand(5)
一维数组转化为二维数组
a = np.arange(20)
a= a.reshape(4,5)
ps:使用reshape(-1,5)得到一样的结果,会根据列自动适应行
构造更高维的
a = a.reshape(2,2,5)
二维数组转化为一维数组
a = np.array([[1,2,3],[4,5,6]])
a= np.ravel(a)
查看数组属性
a.ndim查看维度,a.shape查看各维度大小,a.size查看元素个数,a.dtype查看元素类型
数组切割vsplit()和hsplit()
vsplit()来进行分行,而hsplit分列,np.vsplit(arr,indices)
a = np.arange(18).reshape(-1,3)printaprint np.vsplit(a,3)print np.hsplit(a,3)
输出为
array([[ 0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14],
[15, 16, 17]])
[array([[0,1, 2],
[3, 4, 5]]), array([[ 6, 7, 8],
[9, 10, 11]]), array([[12, 13, 14],
[15, 16, 17]])]
[array([[ 0],
[3],
[6],
[9],
[12],
[15]]), array([[ 1],
[4],
[7],
[10],
[13],
[16]]), array([[ 2],
[5],
[8],
[11],
[14],
[17]])]
按指定位置切分
将第二个参数改为list,来指定切分的位置
print np.vsplit(1,4) #以第1和第4行进行切分
数组操作
1) ‘+’,’-’,’*’,’/’ 加减乘除
2)开根号、指数操作
a = np.array([1,2])printnp.array(a)printnp.sqrt(a)printnp.exp(a)printnp.square(a)print np.power(a,5)print a**5 #和np.power(a,5)效果一样
3)最大最小值
a.min()
a.max()
a.sum()
a.min(axis=0) #minimun element in each column
a.min(axis=1) #minimun element in each row
a.max(axis=0)
a.max(axis=1)
4)数组均值、中位数
np.mean(a)
np.median(a)
数组取值
1)可以直接使用下标取值,直接赋值为浅拷贝(b=a,为b指向了a的内存地址),要真正拷贝,使用copy
a = np.array([[1,2],[3,4]])
b=a
c=a.copy()print a[0][0], b[0][0], c[0][0] #1 1 1
b[0][0] = 5
print a[0][0], b[0][0], c[0][0] #5 5 1
2)利用’:’可以访问某一维的全部数据
a = np.arange(20).reshape(4, 5)print a[:,[1,3]] #取出a的每一行的第2到4个元素
数组拼接
a = np.array([1,2,3])
b= np.array([4,5,6])
c= np.hstack([a,b]) #[1, 2, 3, 4, 5, 6]
d = np.vstack([a,b]) #[[1, 2, 3],
#[4, 5, 6]]
二 矩阵对象
创建矩阵
矩阵是二维的,而数组的可以是任意正整数维
a = np.arange(5)
a= np.mat(a) #[[0, 1, 2, 3, 4]]
b = np.mat('1 2;3 4') #[[1, 2],
#[3, 4]]
矩阵乘法
矩阵的’*’操作符进行的是矩阵乘法,乘号左侧的矩阵列和乘号右侧的矩阵行要相等,而在数组中’*’操作符进行的是每一元素的对应相乘,乘号两侧的数组每一维大小需要一致
矩阵转置
a = np.array([[1, 2, 3], [4, 5, 6]])print np.transpose(a) #数组用transpose
print np.matrix(a).T #矩阵用T
矩阵求逆
a = np.mat('1.0 2.0;3.0 4.0')
b=nlg.inv(a)print a*b #[[1.0000000e+00 0.0000000e+00]
#[8.8817842e-16 1.0000000e+00]]
特征值与特征向量
eig_value, eig_vector = nlg.eig(a)
3 其他
缺失值处理
用nan作为缺失值,用isnan判定
a = np.random.rand(2,2)
a[0,1] =np.nanprint np.isnan(a) #[[False True]
#[False False]]