python中matrix是什么意思_numpy中的matrix与array的区别

Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。而不用np.dot()。如:

importnumpy as np

a=np.mat('4 3; 2 1')

b=np.mat('1 2; 3 4')print(a)#[[4 3]#[2 1]]

print(b)#[[1 2]#[3 4]]

print(a*b)#[[13 20]#[ 5 8]]

matrix 和 array 都可以通过objects后面加.T 得到其转置。但是 matrix objects 还可以在后面加 .H f得到共轭矩阵, 加 .I 得到逆矩阵。

相反的是在numpy里面arrays遵从逐个元素的运算,所以对于array:c 和d的c*d运算相当于matlab里面的c.*d运算。

c=np.array([[4, 3], [2, 1]])

d=np.array([[1, 2], [3, 4]])print(c*d)#[[4 6]#[6 4]]

而矩阵相乘,则需要numpy里面的dot命令 :

print(np.dot(c,d))#[[13 20]#[ 5 8]]

但是python中矩阵没有MATLAB中的.*这个性质,对于matrix对应乘法得用np.multiply()

>>>np.multiply(a,b)

matrix([[4, 6],

[6, 4]])

当然 ** 运算符的作用也不一样 :

print(a**2) #矩阵乘法#[[22 15]#[10 7]]

print(c**2) #对应乘法#[[16 9]#[ 4 1]]

问题就出来了,如果一个程序里面既有matrix 又有array,会让人脑袋大。但是如果只用array,你不仅可以实现matrix所有的功能,还减少了编程和阅读的麻烦。

当然你可以通过下面的两条命令轻松的实现两者之间的转换:np.asmatrix和np.asarray

对我来说,numpy 中的array与numpy中的matrix,matlab中的matrix的最大的不同是,在做归约运算时,array的维数会发生变化,但matrix总是保持为2维。例如下面求平均值的运算

>>> m = np.mat([[1,2],[2,3]])>>>m

matrix([[1, 2],

[2, 3]])>>> mm = m.mean(1)>>>mm

matrix([[1.5],

[2.5]])>>>mm.shape

(2, 1)>>> m -mm

matrix([[-0.5, 0.5],

[-0.5, 0.5]])

对array 来说

>>> a = np.array([[1,2],[2,3]])>>>a

array([[1, 2],

[2, 3]])>>> am = a.mean(1)>>>am.shape

(2,)>>>am

array([1.5, 2.5])>>> a - am #wrong

array([[-0.5, -0.5],

[0.5, 0.5]])>>> a - am[:, np.newaxis] #right

array([[-0.5, 0.5],

[-0.5, 0.5]])

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值