python画图显示在哪设置_python画图设置坐标轴的位置及角度及设置colorbar

本文介绍了如何使用Python进行图形绘制,包括设置y轴在右侧显示,调整坐标轴方向、标签、刻度大小和颜色,以及旋转轴刻度文字。此外,还详细讲解了自定义colorbar的颜色、位置和大小,提供了示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用python画图

设置y轴在右边显示

f, ax = plt.subplots(figsize = (14, 10))

sns.heatmap(corr,cmap='RdBu', linewidths = 0.05, ax = ax)

ax.set_title('Correlation between features', fontsize=18, position=(0.5,1.05))

将y轴或x轴进行逆序

ax.invert_yaxis()

ax.invert_xaxis()

ax.set_xlabel('X Label',fontsize=10)

设置Y轴标签的字体大小和字体颜色

ax.set_ylabel('Y Label',fontsize=15, color='r')

设置坐标轴刻度的字体大小

matplotlib.axes.Axes.tick_params

ax.tick_params(axis='y',labelsize=8) # y轴

ax.tick_params(axis='x',labelsize=6, colors='b', labeltop=True, labelbottom=False) # x轴

将x轴刻度放置在top位置的几种方法

ax.xaxis.set_ticks_position('top')

ax.xaxis.tick_top()

ax.tick_params(axis='x',labelsize=6, colors='b', labeltop=True, labelbottom=False) # x轴

修改tick的字体颜色

ax.tick_params(axis='x', colors='b') # x轴

旋转轴刻度上文字方向的两种方法

ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)

ax.set_xticklabels(corr.index, rotation=90)

单独设置y轴或x轴刻度的字体大小, 调整字体方向

ax.set_yticklabels(ax.get_yticklabels(),fontsize=6)

ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)

旋转轴刻度上文字方向的两种方法

ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)

ax.set_xticklabels(corr.index, rotation=90)

将x轴刻度放置在top位置的几种方法

ax.xaxis.set_ticks_position('top')

ax.xaxis.tick_top()

ax.tick_params(axis='x',labelsize=6, colors='b', labeltop=True, labelbottom=False)

import os

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import math

import seaborn as sns

import matplotlib.gridspec as mg

from sklearn import preprocessing

os.chdir('C:/Users/86178/Desktop')

x = pd.read_table('TME_Sender.csv',index_col=20,sep = ',')

x.iloc[:,0:20] = preprocessing.scale(x.iloc[:,0:20])

y = pd.read_table('ligand_receptor_matrix.txt',sep = '\t',index_col = 0)

z = pd.read_csv('TSK_receiver.csv',index_col= 0)

z.iloc[:,0:22] = preprocessing.scale(z.iloc[:,0:22])

z = z.T

gs = mg.GridSpec(5, 5)

plt.subplot(gs[0:4,1:4])

zz = sns.heatmap(y,cmap='PuRd',linewidths= 1,yticklabels=False,cbar = False)

zz.xaxis.set_ticks_position('top')

zz.set_ylabel('')

zz.set_xticklabels(zz.get_xticklabels(),rotation = 90,family = 'Times New Roman')

plt.subplot(gs[4,1:4])

a = sns.heatmap(x,cmap='bwr',linewidths= 1,xticklabels=False,cbar = False)

a.yaxis.set_ticks_position('right')

a.set_yticklabels(a.get_yticklabels(), rotation=0,family = 'Times New Roman')

a.set_xticklabels(a.get_xticklabels(),family = 'Times New Roman')

plt.ylabel('')

plt.subplot(gs[:4,0])

x = sns.heatmap(z,cbar = False,cmap = 'bwr')

x.xaxis.set_ticks_position('top')

x.set_xticklabels(x.get_xticklabels(),family = 'Times New Roman',rotation = 90)

x.set_yticklabels(x.get_yticklabels(),family = 'Times New Roman')

x.set_xlabel('')

#x.xaxis.set_ticks_position('top')

plt.show()

图片1.png

python设置colorbar

自定义colorbar包含两方面:

自定义colorbar的颜色组合及颜色占比

自定义colorbar的位置和大小

这两项比较简单和实用,matplotlib和seaborn都可以尝试。对于某些特殊的数据分布类型,想在一张图内显示的情况比较适合。

cmap的自定义

cmap本质是一个RGBA格式的颜色列表,元素类型为np.array() ,np.array()里包含4个0-1的元素,前3个是RGB值,第4个为透明度。

seaborn取颜色列表可以用以下方式:

sns.light_palette('blue',reverse=True,n_colors=5)

plt.cm.get_cmap('Blues', 5)

plt.cm.get_cmap('cubehelix', 5)

如果数据中有两组相差比较大的数据构成,可考虑取两组颜色值合并,可通过n_colors参数控制两组颜色的占比,如果存在极值,极值可设置为特殊颜色。

colorbar的位置和大小

可以把colorbar作为单独的axes,自由地定义其位置和占图比例,例如colorbar可以这样设置:cbar_ax = fig.add_axes([0.7, 0.75, 0.025, 0.2]),在seaborn热图中有对应的参数接受自定义的colorbar。

#!/usr/bin/env python

# coding: utf-8 -*-

import pandas as pd

import numpy as np

## 以下为MACOS设置,linux请改为 ​matplotlib.use('Agg')

matplotlib.use('TkAgg')

## juypter notebook显示图像设置

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

cmap= sns.light_palette('blue',reverse=True,n_colors=5)

cmap2=sns.light_palette('red',reverse=False,n_colors=15)

cmap.extend(cmap2)

cmap.append(np.array([.3,.7,.6,1]))

cmap.insert(0,np.array([.7,.7,.5,1]))

fig = plt.figure(figsize=(4,7))

ax = fig.add_axes([0.38, 0.3, 0.3, 0.65], facecolor = 'white')

cbar_ax = fig.add_axes([0.7, 0.75, 0.025, 0.2])

df = pd.DataFrame(np.random.rand(12,5))

ax = sns.heatmap(df, ax=ax,annot=False, cmap=cmap, linewidths=.5, cbar_ax = cbar_ax)

下图的效果对比更明显

图片.png

画图时候marker参数的设置

marker type 含义

“.” point 点

“,” pixel 像素

“o” circle 圆

“v” triangle_down 下三角

“^” triangle_up 上三角

“>” triangle_right 右三角

“1” tri_down 类似奔驰的标志

“2” tri_up 类似奔驰的标志

“3” tri_left 类似奔驰的标志

“4” tri_right 类似奔驰的标志

“8” octagon 八角形

“s” square 正方形

“p” pentagon 五角星

“*” star 星号

“h” hexagon1 六边形1

“H” hexagon2 六边形2

“+” plus 加号

“x” x x

“D” diamond 钻石

“d” thin_diamond 细的钻石

“ “ vline

“-“ hline 水平方向的线

“TICKLEFT” octagon 像素

去掉刻度线

plt.tick_params(bottom=False,top=False,left=False,right=False)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值