二值logit模型的适用条件_各种回归模型适用条件,logistic回归.ppt

各种回归模型适用条件,logistic回归.ppt

LOGISTIC回归 线性模型 一般线性模型 线性模型 广义线性模型 线性模型的条件 LINELLinearIIndependenceNNormaldistributionEEqualvariance LOGISTIC模型 二值变量 0 1 资料的logit变换设P为事件发生的概率 事件发生的优势odds和样本率的关系 图1事件发生的优势odds和样本率的关系 图2logit函数图 图2logit函数图 图3logistic曲线 例1 饮酒与高血压 Dataa Inputydrinka1a2a3a4a5count Cards 11000001100000001110000410100005110100025100100021110010042100010034110001019100001036110000151000001801000009000000010601100002600100001640101000290001000138010010027000010013801000101800000108801000010000000131 proclogisticdescending freqcount modely a1a2a3a4a5drink run SAS程序1 例1SAS结果解释 变量赋值 ResponseProfileOrderedTotalValueyFrequency1120020774Probabilitymodeledisy 1 模型中假 哑 变量的定义问题 模型中假变量的向量表示 或 参数估计及模型检验 最大似然法 使似然函数L达到最大 拟合优度检验 H0 模型拟合观察资料 H1 模型不拟合观察资料 拟合优度检验统计量 2ln L 在大样本条件下近似服从 N m 1的 2分布 变量筛选 似然比检验 最常用 记分检验 统计量 SCORE 公式略 Wald检验 例1模型检验统计量 ModelFitStatisticsInterceptInterceptandCriterionOnlyCovariatesAIC991 029802 456SC995 910836 626 2LogL989 029788 456 例1模型检验结果 TestingGlobalNullHypothesis BETA 0TestChi SquareDFPr ChiSqLikelihoodRatio200 57316 0001Score183 55236 0001Wald125 02286 0001 例1模型吻合情况 AssociationofPredictedProbabilitiesandObservedResponsesPercentConcordant75 1Somers D0 594PercentDiscordant15 7Gamma0 654PercentTied9 1Tau a0 194Pairs154800c0 797 例1结果 参数估计 StandardWaldParameterDFEstimateErrorChi SquarePr ChiSqIntercept1 5 05341 009425 0637 0001a111 54261 06592 09440 1478a213 19901 02319 77630 0018a313 71821 018513 32640 0003a413 96671 023015 03370 0001a513 96161 065013 83750 0002drink11 66710 189677 2908 0001 例1结果 优势比 OddsRatioEstimatesPoint95 WaldEffectEstimateConfidenceLimitsa14 6770 57937 774a224 5083 299182 048a341 1905 595303 229a452 8107 110392 225a552 5436 516423 683drink5 2973 6537 681 参数的意义 优势 对数优势优势比 常数项与预测和判别的关系 病例 对照研究中 常数项不代表各变量取值为零时人群患病OR估计值的对数 不可用于预测和判别 条件logistic模型 匹配资料的问题根据Bayes公式推出 例2 1 1配对设计 胃癌与三种生活因素 每个病例按年龄 性别和居住地取健康对照 调查3种生活因素X1 不良饮食习惯X2 爱吃卤 腌制品X3 精神状态 dataa inputnoyx1x2x3 cards 102401131020321210103030031201 略 490121491001500201501031 procphreg modely x1x2x3 selection stepwiseslentry 0 05 stratano run SAS程序2 例2条件logisticsas结果 参数估计 AnalysisofMaximumLikelihoodEstimatesParameterStandardHazardVarDFEstimateErrorChi SqPr ChiSqRatiox110 785470 256869 35130 00222 193x210 814110 306797 04200 00802 257 例2条件logisticsas结果 变量筛选 TestingGlobalNullHypothesis BETA 0TestChi SquareDFPr ChiSqLikelihoodRatio22 00172 0001Score17 904620 0001Wald12 414420 0020NOTE No additional variablesmetthe0 05levelforentryintothemodel 例2条件logisticsas结果 变量全部入选 AnalysisofMaximumLikelihoodEstimatesParameterStandardHazardVarDFEstimateErrorChi SqPr ChiSqRatiox110 823510 267009 51300 00202 278x210 825610 311417 02900 00802 283x310 498900 517440 92960 33501 647 有序多分类logistic模型 累积logistic模型 设结果变量y有c个等级 如1 显效 2 有效 3 无效则用c 1个方程描述y与x的关系 累积模型程序3 dataa inputyx1x2count cards 111161015211520123116301711061001210720003101930010 proclogistic freqcount modely x1x2 scale noneaggregate run X1性别x2方法y疗效 1显效2有效3无效 有序多分类 变量赋值 ResponseProfileOrderedTotalValueyFrequency112822143342 累积logistic模型参数估计例 AnalysisofMaximumLikelihoodEstimatesStandardWaldParameterDFEstimateErrorChi SqPr ChiSqIntercept11 2 66710 599719 7800 0001Intercept21 1 81270 556610 60640 0011x111 31870 52926 20960 0127x211 79730 472814 44930 0001 X1性别x2方法y疗效 1显效2有效3无效 两个方程 Logit P Y 1 x 2 667 1 318x1 1 797x2Logit P Y 2 x 1 813 1 318x1 1 797x2问一女性病人使用新疗法的预期疗效 将x1 1x2 1代入方程得Logit P Y 1 x 0 448Logit P Y 2 x 1 302P Y 1 x 0 61P Y 2 x 0 79结果 此人显效0 61有效0 18无效0 21 无序多分类logistic模型 设结果变量y有c个等级 如1 鳞癌 2 腺癌 3 大细胞癌则用c 1个方程描述y与x的关系 分化程度 染色和组织类型 程序4无序分类模型 dataa dox1 1to3 dox2 1to2 doy 1to3 inputcount Output end end end cards 10172651250211726161226151516121220 proccatmodorder data directx1x2 weightcount modely x1x2 run 无序多分类SAS结果例 AnalysisofMaximumLikelihoodEstimatesFunctionStandardChi ParaNumberEstimateErrorSqPr ChiSqIntercept1 0 98260 57072 960 08512 0 34610 54130 410 5226x110 62810 179912 190 000520 34540 17284 000 0456x21 0 64940 28335 260 02192 0 63520 27255 430 0197 Logistic模型的应用和问题 应用筛选危险因素 校正混杂因素 预测与判别问题1样本量不能太小2不应单纯依赖程序筛选变量 注意变量的医学意义3自变量的类型和参数意义的解释问题4多数情况下 模型常数项没有意义5条件logistic模型不能用于预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值