pandas to_csv参数详解_【Python基础】Pandas数据可视化原来也这么厉害

本文介绍了Python中Pandas库的数据可视化功能,包括matplotlib、seaborn和pyecharts等库的对比。重点讲解了Pandas的11种常见图形,如柱状图、面积图、密度图等,并详细解析了`plot`函数的参数,如`kind`、`x`、`y`、`stacked`等,帮助读者深入理解Pandas的可视化能力。
摘要由CSDN通过智能技术生成

260d66a095abaee3ee06bd4b6aeddc4a.png

一、可视化概述

在Python中,常见的数据可视化库有3个:

matplotlib:最常用的库,可以算作可视化的必备技能库,比较底层,api多,学起来不太容易。

seaborn:是建构于matplotlib基础上,能满足绝大多数可视化需求,更特殊的需求还是需要学习matplotlib。

pyecharts:上面的两个库都是静态的可视化库,而pyecharts有很好的web兼容性,可以做到可视化的动态效果。并且种类也比较丰富。比如这个图,就非常厉害:画图神器pyecharts-旭日图

Pandas:而今天要讲的是Pandas的可视化,Pandas主要作为数据分析的库,虽然没有上述三个库那个强大,但是胜在方便,在数据分析的过程中,只要一行代码就能实现。并且图形也非常漂亮。

二、直接看案例

Pandas 中,有11个比较常见的图形可视化,还有几个比较进阶的,我们一个一个看看怎么画的

import pandas as pdimport numpy  as npdf= pd.DataFrame(np.random.rand(10, 4), columns=['A','B','C','D'])

01、柱状图-纵向

df.plot.bar()

       6aca7b28015b3933ddebda6ee4b6dd90.png      

stacked=True,画堆叠柱状图

df.plot.bar(stacked=True)

       660dfaad2d634f4a83cb05cf4807e34e.png      

02、柱状图-横向

df.plot.barh()

       c16dbb104e76b1260c66f077bab77a8d.png      

同样,stacked=True,画堆叠柱状图

df.plot.barh(stacked=True)

       260d66a095abaee3ee06bd4b6aeddc4a.png      

03、面积图

df.plot.area(alpha = 0.9)

       80e35df884ad4b3fc33da6f1394ba2c1.png      

df.plot.area(stacked=True,alpha = 0.9)

       33ae0e33f84b2e3b8e9180749533ff9d.png      

04、密度图-kde

df.plot.kde()

       528f91b0f556eb7eedf1cf2216c3855b.png      

05、密度图-density

df.plot.density()

       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值