拉普拉斯变换公式表_MIT—微分方程笔记20 拉氏变换求解线性常微分方程

029a6157d9574332eba8bdbdc47723b3.png

第20讲 拉氏变换求解线性常微分方程

Using Laplace Transform to Solve ODEs

网易公开课​open.163.com
be0bb09097e2db7edb3d1a0f4742155d.png

拉普拉斯变换:函数 f(t)变换为

。下面为拉普拉斯变换的基本公式

db469868d183028e0643b7098f8d10e2.png

拉普拉斯变换存在的条件

本讲主要介绍如何应用拉普拉斯变换求解微分方程,而在此之前首先要保证拉普拉斯变换存在。为保证变换结果存在,广义积分

要收敛。而保证条件即为函数不能增长过快,需要
可以控制其增长。即
k>0, C>0)对于任意 t>0成立,这使得
不超过指数型增长。

①三角函数非常简单

②幂函数

,可通过评估
加以证明,该函数从0点开始增长,而当
t趋近于无穷时,该比值趋近于0(洛必达法则),函数为连续,且始终为正,因此函数一定存在某极大值,

在0附近不收敛。

增长太快不收敛,二者都没有拉普拉斯变换。

拉普拉斯变换不能用于包含以上两类函数的微分方程,但是实际上在通常见到的模型中很难遇到

类型的实例。

拉普拉斯变换解微分方程

微分方程

,初值为
。拉普拉斯变换必须有初值条件,但初值可以是参数状态,解函数中会带有这些参数。

556c380b4b43d7bba86c921282576aa6.png

解函数的拉普拉斯变换为 Y(s) ,将微分方程进行拉普拉斯变换得到 Y(s) 的代数方程,解方程得到比例函数

。对该函数进行反拉普拉斯变换得到解函数 y(t),最困难的一步是反拉普拉斯变换。

导函数的拉普拉斯变换:

(
)

因此有

。从公式可以看到进行拉普拉斯变换需要初值条件。同理可得
。有这两个公式就可以对二阶微分方程进行拉普拉斯变换。

:微分方程

,初值为

在此之前我们求解该方程,要求出齐次方程的解并和方程的特解构成方程的通解,此例中输入函数的指数恰好是特征方程的根,因此需要用到指数移位法求其特解,还需要代入初值条件来确定通解中的参数。解法从头至尾经历相当多的步骤,而拉普拉斯变换要相对简单。

微分方程等式两侧都进行拉普拉斯变换得到:

则有

关于掩盖法(遮挡法)处理部分分式的内容可以参见18.01单变量微积分第29课“部分分式”。

,可推导出

进行反拉普拉斯变换得到

。注意第一项即为特解,而后两项为齐次解的线性组合,而且所有的参数都已经确定了,不必单独进行计算。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值