拉普拉斯变换:
正变换:
F
(
s
)
=
L
[
f
(
t
)
]
=
∫
−
∞
∞
f
(
t
)
e
−
s
t
d
t
F(s)=\mathscr{L}[f(t)]=\int_{-\infty}^{\infty}f(t)e^{-st}dt
F(s)=L[f(t)]=∫−∞∞f(t)e−stdt
逆变换:
f
(
t
)
=
L
−
1
[
f
(
s
)
]
=
1
2
π
j
∫
σ
−
j
∞
σ
+
j
∞
F
(
s
)
e
s
t
d
s
f(t)=\mathscr{L}^{-1}[f(s)]=\frac{ 1 }{2\pi j }\int_{\sigma- j\infty}^{\sigma+j\infty}F(s)e^{s t}ds
f(t)=L−1[f(s)]=2πj1∫σ−j∞σ+j∞F(s)estds
其中:s=
σ
+
j
ω
{\sigma+j \omega}
σ+jω
常见信号的拉氏变换:
信号类型 | 拉普拉斯变换 |
---|---|
阶跃信号 | ε ( t ) ← → 1 s , R e [ s ] > 0 \varepsilon(t)\leftarrow\rightarrow\frac{ 1 }{s } ,Re[s]>0 ε(t)←→s1,Re[s]>0 |
单边指数信号 | e − α t ε ( t ) ← → 1 s + α , R e [ s ] > − α e^{-\alpha t}\varepsilon(t)\leftarrow\rightarrow\frac{1}{s+\alpha},Re[s]>-\alpha e−αtε(t)←→s+α1,Re[s]>−α |
单边正弦信号 | sin ω t ε ( t ) ← → ω s 2 + ω 2 , R e [ s ] > 0 \sin \omega t\varepsilon(t)\leftarrow\rightarrow\frac{ \omega }{s^2+\omega ^2},Re[s]>0 sinωtε(t)←→s2+ω2ω,Re[s]>0 |
单边余弦信号 | cos ω t ε ( t ) ← → s s 2 + ω 2 , R e [ s ] > 0 \cos \omega t \varepsilon(t)\leftarrow\rightarrow\frac{ s }{s^2+\omega ^2}, Re[s]>0 cosωtε(t)←→s2+ω2s,Re[s]>0 |
单边衰减正弦 | e − α t sin ω t ε ( t ) ← → ω ( s + α ) 2 + ω 2 R e [ s ] > − α e^{-\alpha t} \sin\omega t \varepsilon(t)\leftarrow\rightarrow\frac{ \omega }{(s+\alpha)^2+\omega^2 } Re[s]>-\alpha e−αtsinωtε(t)←→(s+α)2+ω2ωRe[s]>−α |
t的正幂信号 | t n ε ( t ) ← → n ! s n + 1 , R e [ s ] > 0 t^n \varepsilon(t)\leftarrow\rightarrow\frac{n! }{s^{n+1} }, Re[s]>0 tnε(t)←→sn+1n!,Re[s]>0 |
冲激信号 | δ ( t ) ← → 1 , R e [ s ] > − ∞ \delta(t)\leftarrow\rightarrow1,Re[s]>-\infty δ(t)←→1,Re[s]>−∞ |
δ ′ ( t ) ← → s , R e [ s ] > − ∞ \delta{\prime}(t)\leftarrow\rightarrow s,Re[s]>-\infty δ′(t)←→s,Re[s]>−∞ | |
δ ( t − t 0 ) ← → e − s t 0 , R e [ s ] > − ∞ \delta (t-t_0)\leftarrow\rightarrow e^{-s t_0},Re[s]>-\infty δ(t−t0)←→e−st0,Re[s]>−∞ |
拉氏变换性质:
线性:
a
1
f
1
(
t
)
+
a
2
f
2
(
t
)
a_1 f_1(t)+a_2 f_2(t)
a1f1(t)+a2f2(t)
←
\leftarrow
←
→
\rightarrow
→
a
1
F
1
(
s
)
+
a
2
F
2
(
s
)
a_1 F_1(s)+a_2 F_2(s)
a1F1(s)+a2F2(s)
时域微分:
d
f
(
t
)
d
t
\frac{d f(t)}{dt }
dtdf(t)
←
\leftarrow
←
→
\rightarrow
→
s
F
(
s
)
−
f
(
0
−
)
s F(s)-f(0_-)
sF(s)−f(0−)
d
2
f
(
t
)
d
t
\frac{d^2 f(t)}{dt }
dtd2f(t)
←
\leftarrow
←
→
\rightarrow
→
s
2
F
(
s
)
−
s
f
(
0
−
)
−
f
′
(
0
−
)
s^2 F(s)-sf(0_-)-f{\prime}(0_-)
s2F(s)−sf(0−)−f′(0−)
d
n
f
(
t
)
d
t
\frac{d^n f(t)}{dt }
dtdnf(t)
←
\leftarrow
←
→
\rightarrow
→
s
n
F
(
s
)
s^n F(s)
snF(s)-
s
n
−
1
f
(
0
−
)
s^{n-1}f(0_-)
sn−1f(0−)-…-
f
(
n
−
1
)
(
0
−
)
f^{(n-1)}(0_-)
f(n−1)(0−)
时域积分:
∫
−
∞
t
f
(
τ
)
d
τ
\int_{-\infty}^{t}f(\tau)d\tau
∫−∞tf(τ)dτ
←
\leftarrow
←
→
\rightarrow
→
F
(
s
)
s
\frac{F(s)}{s }
sF(s)+
f
(
−
1
)
(
0
−
)
s
\frac{f^{(-1)}(0_-)}{s }
sf(−1)(0−)
有始函数:
d
f
(
t
)
ε
(
t
)
d
t
\frac{df(t)\varepsilon(t)}{dt }
dtdf(t)ε(t)
←
\leftarrow
←
→
\rightarrow
→
S
F
(
s
)
SF(s)
SF(s)
∫
0
−
t
f
(
τ
)
d
τ
\int_{0_-}^{t}f(\tau)d\tau
∫0−tf(τ)dτ
←
\leftarrow
←
→
\rightarrow
→
F
(
s
)
s
\frac{F(s)}{s }
sF(s)
=
>
t
ε
(
t
)
=
∫
0
−
t
ε
(
τ
)
d
τ
=>t \varepsilon(t)=\int_{0_-}^{t}\varepsilon(\tau)d\tau
=>tε(t)=∫0−tε(τ)dτ
←
\leftarrow
←
→
\rightarrow
→
1
s
2
\frac{1}{s^2 }
s21
延时特性(时域平移):
f
(
t
−
t
0
)
ε
(
t
−
t
0
)
f(t-t_0)\varepsilon(t-t_0)
f(t−t0)ε(t−t0)
←
\leftarrow
←
→
\rightarrow
→
e
−
s
t
0
F
(
s
)
,
t
0
>
0
e^{-s t_0}F(s),t_0>0
e−st0F(s),t0>0
S域平移:
f
(
t
)
e
−
s
t
0
f(t)e^{-s t_0}
f(t)e−st0
←
\leftarrow
←
→
\rightarrow
→
F
(
s
+
s
0
)
F(s+s_0)
F(s+s0)
尺度变换:
f
(
a
t
)
f(at)
f(at)
←
\leftarrow
←
→
\rightarrow
→
1
a
F
(
s
a
)
,
(
a
>
0
)
\frac{1}{a }F(\frac{s}{a }),(a>0)
a1F(as),(a>0)
初值定理:
f
(
0
+
)
=
lim
t
→
0
+
f
(
t
)
=
lim
s
→
∞
s
F
(
s
)
(
当
F
(
s
)
是
真
分
式
时
成
立
)
f(0^+)=\lim_{t\rightarrow0_+}f(t)=\lim_{s\rightarrow\infty}sF(s) (当F(s)是真分式时成立)
f(0+)=limt→0+f(t)=lims→∞sF(s)(当F(s)是真分式时成立)
终值定理:
f
(
∞
)
=
lim
t
→
∞
f
(
t
)
=
lim
s
→
0
s
F
(
s
)
(
F
(
s
)
极
点
在
复
频
域
左
半
平
面
)
f(\infty)=\lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow 0}sF(s) (F(s)极点在复频域左半平面)
f(∞)=limt→∞f(t)=lims→0sF(s)(F(s)极点在复频域左半平面)
卷积定理:时域
f
1
(
t
)
∗
f
2
(
t
)
f_1(t)*f_2(t)
f1(t)∗f2(t)
←
\leftarrow
←
→
\rightarrow
→
F
1
(
s
)
.
F
2
(
s
)
F_1(s).F_2(s)
F1(s).F2(s)
卷积定理:频域
f
1
(
t
)
.
f
2
(
t
)
f_1(t).f_2(t)
f1(t).f2(t)
←
\leftarrow
←
→
\rightarrow
→
1
2
π
j
F
1
(
s
)
∗
F
2
(
s
)
\frac{1}{2\pi j }F_1(s)*F_2(s)
2πj1F1(s)∗F2(s)
复频域微分:
−
t
f
(
t
)
-tf(t)
−tf(t)
←
\leftarrow
←
→
\rightarrow
→
d
(
F
(
s
)
d
s
\frac{d(F(s)}{ds}
dsd(F(s)
复频域微分:
f
(
t
)
t
\frac{f(t)}{t}
tf(t)
←
\leftarrow
←
→
\rightarrow
→
∫
s
∞
F
(
η
)
d
η
\int_s^{\infty}F(\eta)d\eta
∫s∞F(η)dη
序列傅里叶变换(DTFT:discrete time Fourier transform)
正变换: $$
逆变换:
性质:序列位移:
性质:频域位移:
性质:线性加权:
D
T
F
T
[
n
x
(
n
)
]
=
j
[
d
d
ω
X
e
(
j
ω
)
]
DTFT [nx(n)]=j[\frac{d}{d \omega}X e^{(j\omega)}]
DTFT[nx(n)]=j[dωdXe(jω)]
性质:序列反褶:
D
T
F
T
[
x
(
−
n
)
]
=
X
e
(
−
j
ω
)
DTFT [x(-n)]=X e^{(-j\omega)}
DTFT[x(−n)]=Xe(−jω)