pytorch提供了clone、detach、copy_和new_tensor等多种张量的复制操作,尤其前两者在深度学习的网络架构中经常被使用,本文旨在对比这些操作的差别。
1. clone
返回一个和源张量同shape、dtype和device的张量,与源张量不共享数据内存,但提供梯度的回溯。
下面,通过例子来详细说明:
示例:
(1)定义
import torch
a = torch.tensor(1.0, requires_grad=True, device="cuda", dtype=torch.float64)
a_ = a.clone()
print(a_) # tensor(1., device='cuda:0', dtype=torch.float64, grad_fn=)
注意:grad_fn=,说明clone后的返回值是个中间variable,因此支持梯度的回溯。因此,clone操作在一定程度上可以视为是一个identity-mapping函数。
(2)梯度的回溯
clone作为一个中间variable,会将梯度传给源张量进行叠加。
import torch
a = torch.tensor(1.0, requires_grad=True)
y = a ** 2
a_ = a.clone()
z = a_ * 3
y.backward()
print(a.grad) # 2
z.backward()
print(a_.grad) # None. 中间variable,无grad
print(a.grad) # 5. a_的梯度会传递回给a,因此2+3=5
但若源张量的require_grad=False,而clone后的张量require_grad=True,显然此时不存在张量回溯现象,clone后的张量可以求导。