pytorch中深度拷贝_pytorch:对比clone、detach以及copy_等张量复制操作

本文对比了PyTorch中clone、detach、copy_和new_tensor等张量复制操作。clone返回不共享数据且支持梯度回溯的张量,detach返回脱离计算图的张量,detach和clone组合使用实现无关联复制,new_tensor提供更细致的属性控制,copy_仅复制数据并保持原有属性。

pytorch提供了clone、detach、copy_和new_tensor等多种张量的复制操作,尤其前两者在深度学习的网络架构中经常被使用,本文旨在对比这些操作的差别。

1. clone

返回一个和源张量同shape、dtype和device的张量,与源张量不共享数据内存,但提供梯度的回溯。

下面,通过例子来详细说明:

示例:

(1)定义

import torch

a = torch.tensor(1.0, requires_grad=True, device="cuda", dtype=torch.float64)

a_ = a.clone()

print(a_) # tensor(1., device='cuda:0', dtype=torch.float64, grad_fn=)

注意:grad_fn=,说明clone后的返回值是个中间variable,因此支持梯度的回溯。因此,clone操作在一定程度上可以视为是一个identity-mapping函数。

(2)梯度的回溯

clone作为一个中间variable,会将梯度传给源张量进行叠加。

import torch

a = torch.tensor(1.0, requires_grad=True)

y = a ** 2

a_ = a.clone()

z = a_ * 3

y.backward()

print(a.grad) # 2

z.backward()

print(a_.grad)   # None. 中间variable,无grad

print(a.grad) # 5. a_的梯度会传递回给a,因此2+3=5

但若源张量的require_grad=False,而clone后的张量require_grad=True,显然此时不存在张量回溯现象,clone后的张量可以求导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值