【Pytorch】对比clone、detach以及copy_等张量复制操作

pytorch提供了clonedetachcopy_new_tensor等多种张量的复制操作,尤其前两者在深度学习的网络架构中经常被使用,本文旨在对比这些操作的差别。

1. clone

返回一个和源张量同shapedtypedevice的张量,与源张量不共享数据内存,但提供梯度的回溯

下面,通过例子来详细说明:

示例

(1)定义

import torch

a = torch.tensor(1.0, requires_grad=True, device="cuda", dtype=torch.float64)

a_ = a.clone()
print(a_)   # tensor(1., device='cuda:0', dtype=torch.float64, grad_fn=<CloneBackward>)

注意grad_fn=<CloneBackward>,说明clone后的返回值是个中间variable,因此支持梯度的回溯。因此,clone操作在一定程度上可以视为是一个identity-mapping函数。

(2)梯度的回溯

clone作为一个中间variable,会将梯度传给源张量进行叠加。

import torch

a = torch.tensor(1.0, requires_grad=True)
y = a ** 2 
a_ = a.clone()
z = a_ * 3
y.backward()
print(a.grad)   # 2
z
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值