viterbi算法_HMM与viterbi算法的运用

HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。

HMM描述

任何一个HMM都可以通过下列五元组来描述:

 :param obs:观测序列
 :param states:隐状态
 :param start_p:初始概率(隐状态)
 :param trans_p:转移概率(隐状态)
 :param emit_p: 发射概率 (隐状态表现为显状态的概率)

67afadb7a05e5bcabe0e9c395670ed02.png

例子描述

这个例子可以用如下的HMM来描述:

states = ('Rainy', 'Sunny')
 
observations = ('walk', 'shop', 'clean')
 
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
 
transition_probability = {
    'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
    }
 
emission_probability = {
    'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
    'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}

求解最可能的天气

求解最可能的隐状态序列是HMM的三个典型问题之一,通常用维特比算法解决。维特比算法就是求解HMM上的最短路径(-log(prob),也即是最大概率)的算法。

稍微用中文讲讲思路,很明显,第一天天晴还是下雨可以算出来:

  1. 定义V[时间][今天天气] = 概率,注意今天天气指的是,前几天的天气都确定下来了(概率最大)今天天气是X的概率,这里的概率就是一个累乘的概率了。
  2. 因为第一天我的朋友去散步了,所以第一天下雨的概率V[第一天][下雨] = 初始概率[下雨] * 发射概率[下雨][散步] = 0.6 * 0.1 = 0.06,同理可得V[第一天][天晴] = 0.24 。从直觉上来看,因为第一天朋友出门了,她一般喜欢在天晴的时候散步,所以第一天天晴的概率比较大,数字与直觉统一了。
  3. 从第二天开始,对于每种天气Y,都有前一天天气是X的概率 * X转移到Y的概率 * Y天气下朋友进行这天这种活动的概率。因为前一天天气X有两种可能,所以Y的概率有两个,选取其中较大一个作为V[第二天][天气Y]的概率,同时将今天的天气加入到结果序列中
  4. 比较V[最后一天][下雨]和[最后一天][天晴]的概率,找出较大的哪一个对应的序列,就是最终结果。

NLP应用

具体到分词系统,可以将天气当成“标签”,活动当成“字或词”。那么,几个NLP的问题就可以转化为:

  • 词性标注:给定一个词的序列(也就是句子),找出最可能的词性序列(标签是词性)。如ansj分词和ICTCLAS分词等。
  • 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
  • 命名实体识别:给定一个词的序列,找出最可能的标签序列(内外符号:[内]表示词属于命名实体,[外]表示不属于)。如ICTCLAS实现的人名识别、翻译人名识别、地名识别都是用同一个Tagger实现的。
# 打印路径概率表
def print_dptable(V):
    print "    ",
    for i in range(len(V)): print "%7d" % i,
    print
 
    for y in V[0].keys():
        print "%.5s: " % y,
        for t in range(len(V)):
            print "%.7s" % ("%f" % V[t][y]),
        print
 
 
def viterbi(obs, states, start_p, trans_p, emit_p):
    """
 
    :param obs:观测序列
    :param states:隐状态
    :param start_p:初始概率(隐状态)
    :param trans_p:转移概率(隐状态)
    :param emit_p: 发射概率 (隐状态表现为显状态的概率)
    :return:
    """
    # 路径概率表 V[时间][隐状态] = 概率
    V = [{}]
    # 一个中间变量,代表当前状态是哪个隐状态
    path = {}
 
    # 初始化初始状态 (t == 0)
    for y in states:
        V[0][y] = start_p[y] * emit_p[y][obs[0]]
        path[y] = [y]
 
    # 对 t > 0 跑一遍维特比算法
    for t in range(1, len(obs)):
        V.append({})
        newpath = {}
 
        for y in states:
            # 概率 隐状态 =    前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率
            (prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
            # 记录最大概率
            V[t][y] = prob
            # 记录路径
            newpath[y] = path[state] + [y]
 
        # 不需要保留旧路径
        path = newpath
 
    print_dptable(V)
    (prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
    return (prob, path[state])
 
 
def example():
    return viterbi(observations,
                   states,
                   start_probability,
                   transition_probability,
                   emission_probability)
 
 
print example()

小结

HMM是一个通用的方法,可以解决贴标签的一系列问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值