从频响函数中提取模态参数的理论基础

1. 多项式形式的频响函数

一般振动系统的频响函数的任意一个元素为:
H i j ( ω ) = ∑ r = 1 N Y r φ i r φ j r = ∑ r = 1 N φ i r φ j r k r − m r ω 2 + j ω c r H_{i j}(\omega)=\sum_{r=1}^{N} Y_{r} \varphi_{i r} \varphi_{j r}=\sum_{r=1}^{N} \frac{\varphi_{i r} \varphi_{j r}}{k_{r}-m_{r} \omega^{2}+j \omega c_{r}} Hij(ω)=r=1NYrφirφjr=r=1Nkrmrω2+crφirφjr
H i j H_{i j} Hij表达的物理含义是对j点施加冲击激励,i点的响应的傅里叶变换。因此,频响函数中的任意一行为:
[ H i 1 H i 2 ⋯ H i N ] = ∑ r = 1 N Y r [ φ i r { φ j r } T ] = ∑ r = 1 N [ r H i 1 r H i 2 ⋯ r H i N ] = ∑ r = 1 N Y r φ i r [ φ 1 r φ 2 r ⋯ φ N r ] = ∑ r = 1 N φ i r k r − ω 2 m r + j ω c r [ φ 1 r φ 2 r ⋯ φ N r ] \left[\begin{array}{llll} H_{i 1} & H_{i 2} & \cdots & H_{i N} \end{array}\right]=\sum_{r=1}^{N} Y_{r}\left[\varphi_{i r}\left\{\varphi_{j r}\right\}^{T}\right]=\sum_{r=1}^{N}\left[\begin{array}{llll} { }_{r} H_{i 1} & { }_{r} H_{i 2} & \cdots & { }_{r} H_{i N} \end{array}\right]\\=\sum_{r=1}^{N} Y_{r} \varphi_{i r}\left[\begin{array}{llll} \varphi_{1 r} & \varphi_{2 r} & \cdots & \varphi_{N r} \end{array}\right] \\=\sum_{r=1}^{N} \frac{\varphi_{i r}}{k_{r}-\omega^{2} m_{r}+j \omega c_{r}}\left[\begin{array}{llll} \varphi_{1 r} & \varphi_{2 r} & \cdots & \varphi_{N r} \end{array}\right] [Hi1Hi2HiN]=r=1NYr[φir{φjr}T]=r=1N[rHi1rHi2rHiN]=r=1NYrφir[φ1rφ2rφNr]=r=1Nkrω2mr+crφir[φ1rφ2rφNr]
上式表明,频响函数为系统所有阶模态的叠加。并且,频响函数的任一行,都包含了该系统所有阶模态振型的信息。因此,我们可以通过激励各点,在i点拾振的方式,来得到频响函数的一行,从而通过曲线拟合的方式(例如,最小二乘原理)来得到各阶模态的振型。通过测量频响函数的一列来得到系统模态振型的方式,原理是一样的。

2. 部分分式形式的频响函数

除了采用多项式形式的频响函数,我们也可以采用部分分式形式表述的频响函数。对于一个振动系统,其传递函数为:
H ( s ) = 1 m s 2 + c s + k H(s)=\frac{1}{m s^{2}+c s+k} H(s)=ms2+cs+k1
该函数可以做如下形式的分解:
H ( s ) = 1 m ( s − p ) ( s − p ∗ ) H(s)=\frac{1}{m(s-p)\left(s-p^{*}\right)} H(s)=m(sp)(sp)1
其中, p , p ∗ = − c / 2 m ± ( c / 2 m ) 2 − k / m = − ξ ω n ± j ω d p, p^{*}=-c / 2 m \pm \sqrt{(c / 2 m)^{2}-k / m}=-\xi \omega_{n} \pm j \omega_{d} p,p=c/2m±(c/2m)2k/m =ξωn±jωd,上式可以进一步分解为部分分式的形式:
H ( s ) = r 1 s − p + r 1 ∗ s − p ∗ H(s)=\frac{r_{1}}{s-p}+\frac{r_{1}^{*}}{s-p^{*}} H(s)=spr1+spr1
其中, r , r ∗ = ± 1 2 j m ω d r, r^{*}= \pm \frac{1}{2 j m \omega_{d}} r,r=±2jmωd1。该数称为留数。令 s = j ω s=j \omega s=,则系统的频响函数为:
H ( j ω ) = 1 2 j m ω d ( j ω − p ) + − 1 2 j m ω d ( j ω − p ∗ ) H(j \omega)=\frac{1}{2 j m \omega_{d}(j \omega-p)}+\frac{-1}{2 j m \omega_{d}\left(j \omega-p^{*}\right)} H()=2jmωd(p)1+2jmωd(p)1
对于多自由度系统,系统频响函数中的任意元素为:
H i j ( j ω ) = ∑ r = 1 N ( r A i j j ω − p r + r A i j ∗ j ω − p r ∗ ) H_{i j}(j \omega)=\sum_{r=1}^{N}\left(\frac{{ }_{r} A_{i j}}{j \omega-p_{r}}+\frac{{ }_{r} A_{i j}{ }^{*}}{j \omega-p_{r}{ }^{*}}\right) Hij()=r=1N(prrAij+prrAij)
完整的频响函数表达式为:
H i j ( j ω ) = ∑ r = 1 N ( [ r A ] j ω − p r + [ r A ∗ ] j ω − p r ∗ ) H_{i j}(j \omega)=\sum_{r=1}^{N}\left(\frac{\left[{ }_{r} A\right]}{j \omega-p_{r}}+\frac{\left[{ }_{r} A^{*}\right]}{j \omega-p_{r}{ }^{*}}\right) Hij()=r=1N(pr[rA]+pr[rA])
其中, r A i j = φ i r φ j r 2 j m r ω c h , r A i j ∗ = − φ i r φ j r 2 j m r ω c b { }_{r} A_{i j}=\frac{\varphi_{i r} \varphi_{j r}}{2 j m_{r} \omega_{c h}},{ }_{r} A_{i j}^{*}=-\frac{\varphi_{i r} \varphi_{j r}}{2 j m_{r} \omega_{c b}} rAij=2jmrωchφirφjr,rAij=2jmrωcbφirφjr。这虽然和多项式形式的频响函数表达式不同,但是本质上是一样的。
综上所述,我们只要测得了频响函数的任意一行或者一列,就能够从中得到系统的各阶模态,至于曲线拟合的方法,这就是后话了。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值