已知两点坐标、两边长度和角度求第三点坐标_【微专题】第29讲 坐标系下三角形的面积探究...

这篇博客探讨了在直角坐标系中,已知三角形三个顶点坐标,如何求面积的问题。通过割补法,过顶点作坐标轴平行线将三角形转化为易求面积的部分,例如直角三角形和有平行边的三角形。文中提供了多种割补策略,包括补成矩形、梯形或直角三角形,并总结了规则图形的定义,为解决不规则多边形面积提供思路。
摘要由CSDN通过智能技术生成

【提出问题】

在直角坐标系下,已知三角形三个顶点的坐标,如何求这个三角形的面积?

【分析】

我们发现,当三角形有一条边与坐标轴平行(或垂直)时,此时三角形的面积是易求的(此处有伏笔),原因是什么那?

455fa2d829d6fb28c5eb8c7435c41d87.png

当有一边与一条坐标轴平行时,如果我们以此边为底(这一点很关键),那么这条边上的高,则必然与这条坐标轴垂直,这样的三角形底和高的长度,利用平移的知识,就可以转化为顶点横坐标或纵坐标的差,如下图:

991a0c90e6ce662ddf774c4dbba764ee.png

那么,如果没有与坐标轴平行的边,该怎么求那?下面,我们就以一个具体实例来探究:

【例】已知△ABC,三个顶点的坐标分别为A(-3,-1),B(2,3),C(5,-3),求这个三角形的面积<

假设激光器的坐标为 $(x_l, y_l, z_l)$,相机的坐标为 $(x_c, y_c, z_c)$,激光入射的角度为 $\alpha$,激光条纹上的在相机坐标系下的坐标为 $(x_p, y_p, f)$,其中 $f$ 表示焦距。 首先,我们需要将相机坐标系下的 $(x_p, y_p, f)$ 转换为相机坐标系下的向量 $P_c = (x_p, y_p, f)^T$。然后,我们可以用以下公式将其转换为世界坐标系下的向量 $P_w = (x_w, y_w, z_w)^T$: $$P_w = R_c^T(P_c - T_c)$$ 其中 $R_c$ 是相机坐标系到世界坐标系的旋转矩阵,$T_c$ 是相机坐标系在世界坐标系下的坐标。$R_c$ 和 $T_c$ 可以通过相机标定得到。 接下来,我们需要计算激光器到相机的距离 $d$,并计算出 $(x_p, y_p, f)$ 在世界坐标系下的坐标 $(x_w', y_w', z_w')$。由于相似三角形的性质,我们有: $$\frac{x_w'}{d} = \frac{x_p}{f}, \frac{y_w'}{d} = \frac{y_p}{f}$$ 因此, $$x_w' = \frac{x_p \cdot d}{f}, y_w' = \frac{y_p \cdot d}{f}$$ 又因为 $(x_w', y_w', z_w')$ 和 $(x_l, y_l, z_l)$ 在世界坐标系下的距离为 $d$,所以有: $$(x_w - x_l)^2 + (y_w - y_l)^2 + (z_w - z_l)^2 = d^2$$ 代入 $x_w' = \frac{x_p \cdot d}{f}$ 和 $y_w' = \frac{y_p \cdot d}{f}$,可以得到一个关于 $z_w$ 的方程: $$(\frac{x_p \cdot d}{f} - x_l)^2 + (\frac{y_p \cdot d}{f} - y_l)^2 + (z_w - z_l)^2 = d^2$$ 由于知道了激光的入射角度 $\alpha$,我们可以根据三角函数得 $z_w$: $$z_w = z_l + \frac{d}{\tan \alpha} - \sqrt{(\frac{x_p \cdot d}{f} - x_l)^2 + (\frac{y_p \cdot d}{f} - y_l)^2}$$ 解出 $z_w$,就可以得到 $(x_w, y_w, z_w)$ 在世界坐标系下的坐标了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值