python预处理标准化_Python数据预处理:彻底理解标准化和归一化

数据预处理中,标准化和归一化是常用的数值缩放技术,用于改善模型精度和加速模型收敛。最大-最小规范化将数据映射到[0,1]区间,而Z-Score标准化使数据服从均值为0、标准差为1的分布。机器学习中,涉及梯度下降和计算距离的模型如线性回归、SVM等通常需要归一化或标准化,而概率模型和树形结构模型则不需要。通过示例展示了如何使用Python的sklearn库进行数据预处理,比较了归一化和标准化对数据分布的影响,指出归一化对离群值敏感,而标准化对异常值更具鲁棒性。" 122702121,5667154,Android活体检测:ncnn与MNN部署实践,"['深度学习', 'Android开发', '模型部署', 'ncnn', 'MNN']
摘要由CSDN通过智能技术生成

数据预处理

数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。

常用的方法有两种:

最大 - 最小规范化:对原始数据进行线性变换,将数据映射到[0,1]区间

Z-Score标准化:将原始数据映射到均值为0、标准差为1的分布上

为什么要标准化/归一化?

提升模型精度:标准化/归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

加速模型收敛:标准化/归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。

如下图所示:

哪些机器学习算法需要标准化和归一化

1)需要使用梯度下降和计算距离的模型要做归一化,因为不做归一化会使收敛的路径程z字型下降,导致收敛路径太慢,而且不容易找到最优解,归一化之后加快了梯度下降求最优解的速度,并有可能提高精度。比如说线性回归、逻辑回归、adaboost、xgboost、GBDT、SVM、NeuralNetwork等。需要计算距离的模型需要做归一化,比如说KNN、KMeans等。

2)概率模型、树形结构模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林。

彻底理解标准化和归一化

示例数据集包含一个自变量(已购买)和三个因变量(国家,年龄和薪水),可以看出用薪水范围比年龄宽的多,如果直接将数据用于机器学习模型(比如KNN、KMeans),模型将完全有薪水主导。

#导入数据

import numpy

as np

import matplotlib.pyplot

as plt

import pandas

as pd

df = pd.read_csv(

'Data.csv')

缺失值均值填充,处理字符型变量

df[

'Salary'].fillna((df[

'Salary'].mean()), inplace=

True)

df[

'Age'].fillna((df[

'Age'].mean()), inplace=

True)

df[

'Purchased'] = df[

'Purchased'].apply(

lambda x:

0

if x==

'No'

else

1)

df=pd.get_dummies(data=df, columns=[

'Country'])

最大 - 最小规范化

from sklearn.preprocessing

import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(df)

scaled_features = scaler.transform(df)

df_MinMax = pd.DataFrame(data=scaled_features, columns=[

"Age",

"Salary",

"Purchased",

"Country_France",

"Country_Germany",

"Country_spain"])

Z-Score标准化

from sklearn.preprocessing

import StandardScaler

sc_X = StandardScaler()

sc_X = sc_X.fit_transform(df)

sc_X = pd.DataFrame(data=sc_X, columns=[

"Age",

"Salary",

"Purchased",

"Country_France",

"Country_Germany",

"Country_spain"])

import seaborn

as sns

import matplotlib.pyplot

as plt

import statistics

plt.rcParams[

'font.sans-serif'] = [

'Microsoft YaHei']

fig,axes=plt.subplots(

2,

3,figsize=(

18,

12))

sns.distplot(df[

'Age'], ax=axes[

0,

0])

sns.distplot(df_MinMax[

'Age'], ax=axes[

0,

1])

axes[

0,

1].set_title(

'归一化方差:% s '% (statistics.stdev(df_MinMax[

'Age'])))

sns.distplot(sc_X[

'Age'], ax=axes[

0,

2])

axes[

0,

2].set_title(

'标准化方差:% s '% (statistics.stdev(sc_X[

'Age'])))

sns.distplot(df[

'Salary'], ax=axes[

1,

0])

sns.distplot(df_MinMax[

'Salary'], ax=axes[

1,

1])

axes[

1,

1].set_title(

'MinMax:Salary')

axes[

1,

1].set_title(

'归一化方差:% s '% (statistics.stdev(df_MinMax[

'Salary'])))

sns.distplot(sc_X[

'Salary'], ax=axes[

1,

2])

axes[

1,

2].set_title(

'StandardScaler:Salary')

axes[

1,

2].set_title(

'标准化方差:% s '% (statistics.stdev(sc_X[

'Salary'])))

可以看出归一化比标准化方法产生的标准差小,使用归一化来缩放数据,则数据将更集中在均值附近。这是由于归一化的缩放是“拍扁”统一到区间(仅由极值决定),而标准化的缩放是更加“弹性”和“动态”的,和整体样本的分布有很大的关系。所以归一化不能很好地处理离群值,而标准化对异常值的鲁棒性强,在许多情况下,它优于归一化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值