python预处理标准化_tensorflow预处理:数据标准化的几种方法

本文介绍了TensorFlow中数据预处理的几种标准化方法,包括(0,1)标准化、Z-score标准化和Sigmoid函数。通过这些方法,可以确保特征向量的每个元素在分类器中得到平等对待,提高模型的性能。详细阐述了每种方法的原理,并提供了Python实现代码。" 109617353,10292902,Python导入模块详解:import与from...import的用法,"['Python', '导入模块', '编程基础']
摘要由CSDN通过智能技术生成

tensorflow预处理:数据标准化的几种方法

发布时间:2018-08-09 19:39,

浏览次数:1774

, 标签:

tensorflow

数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features

vector进行归一化处理,以保证每个特征被分类器平等对待。下面我描述几种常见的Normalization

Method,并提供相应的python实现(其实很简单):

1、(0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature

vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:

LaTex:{x}_{normalization}=\frac{x-Min}{Max-Min}

Python实现:

def MaxMinNormalization(x,Max,Min): x = (x - Min) / (Max - Min); return x;

找大小的方法直接用np.max()和np.min()就行了,尽量不要用python内建的max()和min(),除非你喜欢用List管理数字。

2、Z-score标准化:

这种方法给予原始数据的均值(mean)和标准差(standard

deviation)进行数据的标准化。经过处理的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值