判断上三角矩阵_线性代数24——矩阵的对角化和方幂

对角化矩阵 Diagonalizing a matrix

  假设A有n个线性无关的特征向量

,这些特征向量按列组成矩阵S,S称为
特征向量矩阵。来看一下A乘以S会得到什么:

185f4d8932c3f06f7a743b2186411d82.png

  最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用

表示:

3a255b08ef180fd7a8894c4fe56df266.png


  没有人关心线性相关的特征向量,上式有意义的前提是S由n个线性无关的特征向量组成,这意味着S可逆,等式两侧可以同时左乘

12903a06a63419a414c106da05caa61d.png

就是对角化的两种方法。需要注意的是,并非所有矩阵A都存在n个线性无关的特征向量,这类矩阵不能对角化。

  矩阵对角化还有另一种表达:

af33d66e802c172ef4792e1c4fb91d5e.png

  我们已经知道了矩阵的LU分解,A=LU;格拉姆-施密特正交化,A=QR;现在又多了一种对角化分解,

之前曾经提到过消元进行行操作和列操作最后会得到“相抵标准型”。现在我们得到的是矩阵的“相似标准形”,它还保有矩阵操作的基本性质——特征值,而相抵标准型只剩下最内核的秩信息还保留着。

矩阵的方幂

  如果A存在特征值和特征向量,即Ax = λx,那么

的特征值和特征向量是什么?

  这在上一章的示例中出现过,将Ax = λx的等式两侧同时左乘A就可以表示A的特征向量:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值