矩阵特征值与特征向量_矩阵的特征向量和特征值与优化方法

43fa84db9b222dab0d60cadf26b48f74.png

矩阵特征值和特征向量的描述

a5bf1d3cd0bb00dc19d92b600401824a.png

特征值绝对值大于1和小于1:

04b041d897b942d30abe2614a971effd.png

配图说明:

c3442ffba17524afe0f306daa2f5c961.png

非奇异矩阵乘以任意向量,某个特征值小于1的分量逐渐收缩:

b8f4f3656f398cfa280f0afd7e55c136.png

某个分量一直在减小:

569d819d3c6ad46fc35d00b0ce664267.png

雅可比迭代

解决Ax=b的问题。

D是对角矩阵,对角上的元素和A相同(便于求逆)E是对角线元素为0,其他为A

2925b564ecd16b04c3b63ec0c21a6748.png

通过14式可以知道,如果x为最优解时,迭代不会改变x的值。

1a137ea89ddb06f772a4e498a0a0dc12.png

上面的迭代在干嘛:

每次进行14不影响真实分量x,只影响误差e,如果B的所有特征值小于1,经过有限次迭代e会收敛到0

26f6cf4fdada2a042fdf04074898d7ac.png

收敛速度的讨论:

含有最大特征值对应的特征向量的初始e,收敛最慢

99b1c565cd080c1192408f918312c2f9.png

一个雅可比迭代的例子:

求特征值:

6eb9b7a24478cde2a028bb0cb87650d4.png

f6138496abb73471a52c183f5bda8428.png

求特征向量:

688b65ba053c6827970ad27e39629d84.png

d0c581cad62965347c685b1de810b14a.png

迭代:

68c3121db8c53e8b7bf937a08d797d4d.png

B的特征值和向量将不在和A相同:

bd9f03d94d669ba2d10d0611b001a785.png

2460526093a3fb001a85341a611a695d.png

之前的最速下降算法分析:

82714a203ab737d760640a1cd9522c35.png

可见如果

2a5de189dce83fae0f9fce38227b94d7.png

是其中的一个特征向量那么一次迭代就求出了解。

上面式子结合:

f8f2c8cb15e66a731bfe9fd0b7d98b95.png

的由来:

e41679e1af816bbd38bfe32f99617c45.png

34e6d588989c8e7513b8b1d5efa7e789.png

的得到:

753e21f1e2100fe42f05f720a56c64ec.png

077ab3d9e39b58aaefd2af6610ce4579.png

看。

一次迭代出结果的图像表示:

6573f33c4b71d86fb7911fcfdc2c6ceb.png

60afe55759226f6510ecb163042e9734.png

扩展到e不是特征向量的情况:

e表示为A的特征向量的组合;

f7f8117b767006dcc6616b3d8a14b5d3.png

一些性质:

41639fb5d24f845c20f65c47fa8ef944.png

带入最大梯度优化:

edabd7e380175704e5a0d95ff05b95ae.png

考虑只有一个特征向量,即所有特征值相等:

2f55401f9dbd9b7e7046d8c48f942fdc.png

可见一步就达到目的了

解释原因因为是圆形,导致无论起点在哪e都指向圆心:

d362d6f98638bde7e52000142d8eb6d5.png

def4a946f448c8686567c281c472d6d2.png

简单讨论一般情况,即多个特征值,且不相等:

和雅可比迭代的区别:

c917ab34fdb878ec7db82ffe27af9c78.png

一般情况下的收敛:

二次函数可以写成,x为最优值,p是任一点

16d40430fef3e9d3bd7e2e3dd1bb978a.png

最小化8即最小化

e585485ccd840d980447840a2a062b15.png

带入迭代关系;

0ffc0597e1c89d2cd7d02eb158765f19.png

可见w只要小于1,迭代数次后e减少

增加变量和变形:

ab34730726633878fe257bc0d64992de.png

根据上面画出图像:

cb6a48bb7eda2955cb7b88ffcc4b7e61.png

通过上面图分析上面讨论过的特征值相同和e为特征向量的例子:

e9c9c5050d040a681b5678465d4317e7.png

几种情况下迭代收敛速度的讨论:

7a900de67c50fb5631bf9175a1111248.png

6962f19d2b21c3356ab0b64ce9abeebb.png

不同

60d2100a06831b70f4349b406ca9ce93.png

cd64d24a5c5718e300fb7fef77e40dbd.png

上面的过程每一步迭代都是正交的

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

有人看待续。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值