更多AI大模型应用开发知识,尽在聚客AI学院
一、文档分块:知识结构化的基石
1.1 文档分块的本质与价值
文档分块(Chunking)是将长文本分割为语义连贯的片段的过程,是构建高效检索系统的基础。其核心价值体现在:
-
上下文保留:确保每个分块包含完整语义单元(如段落、章节)
-
处理效率:将GB级文档转化为可管理的处理单元(通常512-1024 tokens)
-
检索精度:提升向量搜索的相关性(分块质量直接影响召回率)
工业级案例:某法律AI系统通过优化分块策略,合同条款检索准确率从68%提升至92%
1.2 分块策略技术选型矩阵
递归分块代码示例
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512, # 目标块大小
chunk_overlap=64, # 块间重叠
separators=["\n\n", "\n", "。", "!", "?"] # 分割符优先级
)
chunks = text_splitter.split_text(long_text)
二、文本分词:语言理解的原子操作
2.1 分词技术演进路线
原始文本 → 字符级处理 → 词典匹配 → 统计模型 → 深度学习
中文分词难点:
-
无显式分隔符(对比英文空格分词)
-
歧义切分(如"研究生命"可切分为"研究/生命"或"研究生/命")
2.2 四大分词方法对比
Jieba实战示例:
import jieba
jieba.load_userdict("custom_dict.txt") # 加载领域词典
text = "自然语言处理是人工智能的核心领域"
print(jieba.lcut(text))
# 输出:['自然语言', '处理', '是', '人工智能', '的', '核心', '领域']
三、向量嵌入:语义映射的魔法
3.1 嵌入模型演进史
Word2Vec → GloVe → BERT → Sentence-BERT → LLM Embeddings
技术指标对比:
3.2 主流工具性能评测
BERT向量提取示例:
from transformers import AutoTokenizer, AutoModel
import torch
model = AutoModel.from_pretrained("BAAI/bge-large-zh")
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-large-zh")
inputs = tokenizer("自然语言处理", return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
四、工业级预处理流水线设计
4.1 最佳实践架构
文档解析:PDF/Word/HTML格式转换
分块处理:滑动窗口+语义分块混合策略
文本清洗:去除噪音字符、标准化表达
分词优化:领域词典+深度学习联合切分
向量生成:动态选择嵌入模型
4.2 性能优化技巧
-
并行处理:
from multiprocessing import Pool
with Pool(8) as p:
chunks = p.map(split_func, doc_list)
-
量化加速:FP32 → FP16使推理速度提升1.8倍
-
缓存机制:高频查询结果缓存命中率>85%
掌握文档分块、分词与向量嵌入技术,是构建高效NLP系统的关键基础。