- 博客(64)
- 收藏
- 关注
原创 手撕Transformer编码器:从位置编码到层归一化的逐行实现
本文深入剖析Transformer编码器的核心组件,通过数学原理、可视化图解和完整代码实现,全面讲解位置编码、层归一化、前馈网络和残差连接的设计思想与实现细节。
2025-06-12 13:41:16
645
原创 万字深度解析注意力机制全景:掌握Transformer核心驱动力
本文深入剖析Transformer的核心创新——Self-Attention机制,通过数学推导、代码实现和可视化,全面讲解Query/Key/Value概念、Scaled Dot-Product Attention原理以及Multi-Head Attention实现细节。
2025-06-11 14:23:27
811
原创 PyTorch终极实战:从自定义层到模型部署全流程拆解
本文深入讲解PyTorch高级开发技巧,涵盖自定义层/损失函数实现、模型保存加载策略以及TensorBoard可视化监控,提供工业级最佳实践和完整代码示例。
2025-06-10 14:16:02
561
原创 RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成完整代码实现。
2025-06-09 14:14:48
1219
原创 CNN核心机制深度解析:卷积池化原理 & PyTorch实现经典网络
本文系统讲解CNN核心原理、经典网络架构和图像分类实战,涵盖卷积层、池化层、LeNet/AlexNet/VGG/ResNet设计思想,并提供CIFAR-10/MNIST完整实现代码。
2025-06-08 14:54:17
1380
原创 从零掌握神经网络:5大核心组件终极指南
本文系统讲解神经网络核心原理,涵盖感知机模型、激活函数、损失函数和反向传播算法,结合数学推导、可视化图解和代码实现,帮你彻底掌握神经网络工作机制。
2025-06-06 14:05:30
1062
原创 系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程,并实现线性回归与多层感知机模型。
2025-06-05 13:54:16
743
原创 AI大模型应用开发工程师10步搞定:从Anaconda到GPU加速的Python深度学习环境
Python深度学习环境搭建: Anaconda/Miniconda、虚拟环境管理、Jupyter Notebook/Lab使用、GPU驱动安装(CUDA/cuDNN)
2025-06-04 14:45:30
965
原创 告别零碎知识!一次搞懂监督/无监督、过拟合、偏差方差、评估指标与交叉验证
掌握监督/无监督学习、过拟合/欠拟合、偏差/方差、评估指标和交叉验证是机器学习入门的核心基础。本文通过理论解析+可视化+代码实战,帮你构建系统认知框架。
2025-06-03 14:32:57
863
原创 企业知识库问答系统避坑指南:检索优化与生成一致性解决方案
1. 智能问答系统架构设计 - 数据准备与存储:构建问答数据库,使用Elasticsearch进行高效检索 - 检索模块:关键词检索与语义搜索,结合大模型进行语义匹配 - 生成模块:使用生成模型(如GPT)根据检索结果生成最终答案2. 系统开发与实现 - 数据预处理与索引:清洗数据并使用Elasticsearch构建检索引擎 - 检索与生成集成:从检索到生成的完整流程 - 异常处理:过滤低质量结果,确保答案准确3. 性能优化 - 检索效率:通过缓存和向量数据
2025-05-30 15:26:06
698
1
原创 训练成本直降90%!LoRA微调与GGUF量化的深度碰撞
1.模型微调 / 评测 / 部署2.Fine Tuning /LORA/QLORA /GGUF3.微调的概念与优势4.全量微调/增量微调/局部微调5.PEFT 大模型高效微调理论、指令数据集构造方法6.理解 LoRA 低秩分解 /LoRA 微调实战/多适配器加载与切换7.微调高级进阶8.透彻分析模型训练时显存占用问题9.半精度模型训练与8bit 模型训练实战及优化技巧10.大模型微调与数值下溢、内存溢出等问题解决11.GGUF 模型转换
2025-05-29 14:15:18
609
原创 「代码级深度」Transformer完全手册:从ReLU前馈网到Flash Attention的20个关键技术点
1.Transformer 的整体结构2.编码器结构:Self-Attention层 + 前馈神经网络层3.解码器结构:带掩码的 Self-Attention层 + Self-Attention 层 + 一个前馈神经网络
2025-05-28 12:58:04
541
原创 三天掌握PyTorch精髓:从感知机到ResNet的快速进阶方法论
1.深度学习与PyTorch 开发2.常见问题分析3.如何计算神经网络模型的参数量?4.不同的学习率对模型收敛有什么影响?5.为什么梯度下降算法能优化目标函数?6.不同的梯度下降算法对模型收敛有什么影响?7.为什么模型训练的效果一直停滞不前?8.神经元越多,网络深度越大,效果越好吗?
2025-05-27 16:01:52
614
原创 从信息瓶颈到动态感知:大模型注意力机制完全演进指南
1.seq2seq模型与注意力机制 Attention2.seq2seq结构,以其在NMT中的应用为例3.详解Decoder,他就是个语言模型4.为什么训练和预测时的Decode不一样?5.计划采样 Scheduled Sampling6.贪心算法 VS Beam Search7.注意力机制 Attention8.朴素seq2seq的信息瓶颈9.Attention机制的直观理解10.Attention机制的数学表达11.向量的点积操作12.Attention机制的步骤
2025-05-26 15:27:31
698
原创 从Embedding到多模态检索:AI知识库构建的进阶路线图
1.Embeddings和向量数据库2. CASE:基于内容的推荐 - 什么是N-Gram - 余弦相似度计算 - 为酒店建立内容推荐系统3. Word Embedding - 什么是Embedding - Word2Vec进行词向量训练4. 什么是向量数据库 - FAISS, Milvus, Pinecone的特点 - 向量数据库与传统数据库的对比5. Faiss工具使用 - 案例: 文本抄袭自动检测分析
2025-05-24 13:44:55
504
原创 PyTorch高阶技巧:构建非线性分类器与梯度优化全解析
1.PyTorch 高级实战2.利用单层神经元网络来实现线性模型预测3.利用线性模型来对数据进行二分类4.多层感知机的手动推导、自动梯队与实现优化
2025-05-23 13:32:26
945
原创 深度学习入门到实战:用PyTorch打通数学、张量与模型训练全链路
1.深度学习与PyTorch 开发2.人工智能-机器学习-深度学习之间的关系3.PyTorch 介绍与环境准备:Conda 和 PyTorch 安装4.人工智能数学基础5.标量、向量、张量6.PyTorch 中的张量7.张量的基本操作8.数据预处理操作9.线性代数操作10.神经元及神经网络,偏置项的作用11.样本、目标函数、损失函数、特征及训练12.非线性激活函数与常见的激活函数13.典型的模型训练过程14.反向传播机制15.常见的计算机程序求导的方法
2025-05-22 14:17:59
867
原创 【性能提升300%】Function Calling高并发实践:gRPC优化+缓存策略+容错设计
1.Function Calling2.Function Calling的概念与应用3.什么是Function Calling?它在跨模型协作中的角色4.Function Calling的实现过程5.跨系统与跨语言的Function Calling6.如何实现不同模型、不同系统间的功能调用7.使用API或RPC进行跨系统调用8.Function Calling的优化9.提升Function Calling的性能与稳定性10.设计高效的Function Calling机制
2025-05-21 15:09:35
585
原创 离线环境破局:聚客AI无外网部署Dify的依赖镜像打包与增量更新方案
1.Dify本地化部署步骤2.部署Dify后端:如何安装和配置Dify后端服务(如数据库连接、API服务、身份认证等)3.配置前端界面:如何配置Dify的前端应用,确保与后端服务的无缝连接4.启动和运行:如何启动Dify服务,并验证各组件是否正常运行5.数据库初始化:如何进行数据库迁移、初始化表结构以及加载示例数据
2025-05-20 15:12:19
727
原创 LangChain Agent架构解密:从Prompt设计到Executor调优的5层实践方法论
1.LangChain Agent2.什么是LangChain Agent3.LangChain Agent 核心组件4.Agent5.Tools6.Prompt Templates7.Agent Executor
2025-05-19 15:04:35
1043
原创 智能体性能调优手册:用Flowise快速构建企业级AI-Agent智能体工作流
1.智能体的基本架构与功能2.Agents流程、决策图3.规划(Planning)4.了任务拆解5.反思与改进6.记忆(Memory)7.工具使用(Tools)8.预制工具(Tool)9.预制工具集(Toolkits)10.自定义工具11.执行(Action)
2025-05-18 15:35:08
874
原创 ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
1.高级Prompt优化技巧2.迭代优化:如何根据模型的反馈逐步改进Prompt3.控制生成的语气与风格:如何设计Prompt以生成更符合需求的语言风格(正式、幽默、简洁等)4.多轮对话优化:如何设计有效的多轮对话Prompt,使模型理解上下文并维持对话一致性5.时间性与主题一致性:如何保证生成内容的连贯性和时效性6.稀疏编码与关键词设计:如何通过关键词和概念精炼Prompt,提高生成的质量和相关性
2025-05-16 14:32:16
736
原创 AI大模型硬件如何选?最强硬件选配指南:深度学习GPU监控与调优的10个必备工具
1.GPU与CPU:计算硬件与大模型推理2.计算机硬件基础3.什么是CPU?4.什么是GPU?5.GPU vs CPU 类型解析6.GPU在大模型推理中的应用7.查看设备GPU信息8.GPU硬件选择策略
2025-05-15 14:13:18
665
原创 告别无效对话!结构化Prompt设计指南:从ChatGPT到Claude的全模型适配技巧
1.Prompt设计的基本原则2.简洁性与清晰度:如何设计简洁明了的Prompt3.上下文与语境的设计:如何为模型提供充分的上下文信息4.问题明确性:如何避免模糊不清的提示导致错误输出5.使用语言模型的指令:如何给模型传递清晰的指令以生成所需结果6.结构化与非结构化Prompt:适应不同任务的Prompt设计
2025-05-14 14:13:28
731
原创 零基础入门循环神经网络RNN:手把手实现文本生成与模型调优(附完整代码)
1.循环神经网络 RNN2.Native RNN模型3.为什么需要循环神经网络4.循环神经网络的结构5.数学语言描述RNN结构的前向传播与反向传播6.传统RNN的问题7.记忆力过强8.处理长序列时存在梯度消失和梯度爆炸问题9.梯度消失带来的问题的直观感受
2025-05-13 13:53:49
475
原创 自监督与强化学习核心技术拆解:机器学习四大范式终极指南附代码
1.机器学习 Machine Learning2.机器学习分类3.按学习范式分类4.有监督学习 Supervised Learning5.有监督学习的基本定义6.有监督学习的典型应用7.常见的有监督学习的算法8.无监督学习 Unsupervised Learning9.无监督学习的基本定义10.无监督学习的典型应用11.常见的无监督学习的算法12.自监督学习 Self-supervised Learning13.强化学习 Reinforcement Learning
2025-05-12 14:05:42
1230
原创 CNN参数效率揭秘:卷积神经网络CNN架构设计中的5大黄金法则与可视化解析
1.卷积神经网络CNN2.卷积神经网络概述3.什么是卷积?4.图像处理中的卷积5.卷积神经网络的结构6.卷积层 Convolutional Layer7.池化层 Pooling Layer8.卷积神经网络中的超参数9.卷积核尺寸 Kernel Size10.滑动窗口步长 Stride11.边缘填充 Padding12.卷积核的个数 Number of Kernels13.感受野 Receptive Field14.什么是感受野?15.感受野为什么重要?
2025-05-10 15:21:38
979
原创 Batch Size如何选?学习率怎么调?聚客AI万字长文拆解神经网络超参数优化法则
1.神经网络的训练2.前向传播 Forward Propagation)3.梯度下降 Gradient Descent4.损失函数 Loss Function5.梯度下降 Gradient Descent6.模型更新的频率与超参数7.批大小 Batch Size8.学习率 Learning Rate9.迭代次数 Eopchs10.正则化11.激活函数12.反向传播13.反向传播介绍14.梯度消失问题和梯度爆炸问题15.缓解梯度问题:归-化 Nommalization
2025-05-09 15:25:53
841
原创 预训练模型实战手册:用BERT/GPT-2微调实现10倍效率提升,Hugging Face生态下的迁移学习全链路实践
1.预训练模型 PTM2.迁移学习 Transfer Learning3.为什么要有预训练?4.预训练模型用于下游任务的策略5.固定特征提取器6.Fine-Tuning7.为什么在NLP中迟迟没有出现类似CV预训练的范式?
2025-05-08 14:17:23
1041
原创 从零到99%准确率:3天掌握神经网络开发,MNIST手写识别代码,图解神经元工作原理与PyTorch实战
1.神经网络概述2.语义鸿沟:为什么让机器产生智能这么难?3.把一张图表示为一个784维的向量4.什么是神经元 Neuron5.神经网络的结构6.输入层和输出层7.什么是隐层8.权重矩阵
2025-05-07 15:10:57
770
1
原创 企业级RAG架构设计:从FAISS索引到HyDE优化的全链路拆解,金融/医疗领域RAG落地案例与避坑指南(附架构图)
1.RAG技术概述2.什么是RAG技术?它如何增强大模型的生成能力3.RAG的核心原理与流程
2025-05-06 13:48:12
993
原创 AI智能体协议终极指南:深度拆解下一代智能体安全协议设计
1.什么是AI智能体协议?2.AI智能体的“语言”与“礼仪”3.为什么我们应该关心AI智能体协议?4.AI智能体协议的分类与深度解析5.面向上下文的协议:连接智能体与外部世界6.通用协议:MCP(模型上下文协议)7.智能体间协议:智能体的“社交网络”8.如何评估和选择AI智能体协议?
2025-04-30 16:11:57
973
原创 向量数据库+KNN算法实战:HNSW算法核心原理与Faiss性能调优终极指南
1.使用向量数据库进行相似性检索2.如何利用向量数据库进行高效的相似性检索:KNN(K最近邻)算法的应用3.结合嵌入表示与向量数据库,实现大规模数据的快速搜索与推荐4.用Chroma进行大规模文本或图像检索
2025-04-29 14:08:28
711
原创 多智能体协作新范式!LangGraph+LangChain高效搭建企业级AI系统的5大核心技巧
1.LangGraph 框架深度学习2.LangGraph简介3.LangGraph最佳实践4.状态设计5.节点函数6.边的设计7.错误处理
2025-04-28 16:13:58
473
原创 告别OOM!大模型微调显存优化秘籍:QLoRA+DeepSpeed实战全解析
1.SFT 微调训练/LoRA/QLoRA2.微调的概念与优势3.全量微调/增量微调/局部微调4.PEFT 大模型高效微调理论、指令数据集构造方法5.理解 LoRA 低秩分解/LoRA 微调实战/多适配器加载与切换6.微调高级进阶7.透彻分析模型训练时显存占用问题8.半精度模型训练与8bit 模型训练实战及优化技巧9.大模型微调与数值下溢、内存溢出等问题解决
2025-04-27 14:30:13
1257
原创 聚客AI手把手实战:用LlamaIndex+代码实现亿级数据的智能问答系统
1.Llamalndex概述2.什么是Llamalndex?其在知识管理中的作用3.Llamalndex的架构与功能4.索引阶段5.数据连接器6.文档/节点7.数据索引8.查询阶段9.查询引擎10.聊天引擎11.代理12.检索器13.节点后处理器14.响应合成器
2025-04-25 14:13:42
1102
原创 「图文互搜+情感分析」聚客AI前沿技术拆解:用Hugging Face玩转多模态AI大模型
1.多模态机器学习与典型任务2.跨模态预训练3.Language-Audio/Vision-Audio /Vision-Language4.定位相关任务5.Affect Computing 情感计算
2025-04-24 16:02:18
1125
原创 如何用1/10成本实现企业级AI智能体?聚客AI深度揭秘大模型开发「四维架构」
第一章 应用层:四大核心场景深度解析1.1 增强检索类应用1.2 智能体类应用1.3 事务处理类应用1.4 分析决策类应用第二章 应用技术层:五大核心技术突破2.1 智能体工程化2.2 提示词工程进阶2.3 微调技术深度优化2.4 数据向量化工程2.5 数据获取与治理第三章 模型层:前沿模型架构解密3.1 大语言模型(LLM)3.2 语言-视觉大模型3.3 文本理解模型3.4 多模态监测与分割大模型
2025-04-23 16:56:27
1167
原创 AI大模型多代理系统开发全指南,聚客AI揭秘多Agent系统设计中的困境与突围路径
在人工智能领域,代理是一类借助大语言模型(LLM)来决定应用程序控制流的系统。随着开发的推进,这类系统往往会变得愈发复杂,给管理和扩展带来诸多难题。比如,你可能会遭遇以下状况:工具选择困境:代理可调用的工具繁多,导致在决策下一步使用哪个工具时表现欠佳。上下文管理难题:上下文信息过于繁杂,单个代理难以有效追踪和处理。专业领域需求多样:系统内需要涵盖多个专业领域,像规划师、研究员、数学专家等角色。为化解这些问题,一种有效的策略是把应用程序拆分成多个较小的独立代理,进而组合成多代理系统。这些独立代理的复杂程度差异
2025-04-23 16:39:28
551
Transformer面试题总结97道:涵盖核心技术与应用场景解析
2025-04-12
2025年最新AI大模型大厂面试题解析:涵盖Transformer、BERT、GPT等核心技术与应用场景
2025-04-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人